Jinlong Liu, Yanfei Zhang, Hao Wu, Pan Yang, Wenlong Wang, Chenliang Li, Hong Cao, Jinying Wu, Xin Sun
{"title":"Chelerythrine Protects Against Acetaminophen-Induced Acute Liver Injury: Insights from Gut Microbiota and Multi-Omics Analysis.","authors":"Jinlong Liu, Yanfei Zhang, Hao Wu, Pan Yang, Wenlong Wang, Chenliang Li, Hong Cao, Jinying Wu, Xin Sun","doi":"10.3390/antiox14091063","DOIUrl":null,"url":null,"abstract":"<p><p>Chelerythrine (CHE) is the main active component of <i>Chelidonium majus</i> L., possessing excellent antioxidant and anti-inflammatory properties. However, the protective effects of CHE against liver injury and its underlying mechanisms remain unclear. We aimed to investigate the effects of CHE on acute liver injury (ALI) and explore its underlying mechanisms. Mice were orally administered with or without CHE (15 and 30 mg/kg) treatment for 7 days, followed by a single intraperitoneal injection of acetaminophen (APAP, 350 mg/kg). After 24 h, serum, liver, and fecal samples were collected. Then, 16S rRNA gene sequencing, metabolomics, and transcriptomics approaches were employed to investigate the protective effects of CHE against ALI. Finally, we elucidated the role of CHE in restoring gut microbiota and metabolic disorders in the context of ALI. The results showed that CHE significantly inhibited ALT and AST levels (<i>p</i> < 0.001). Furthermore, CHE counteracted APAP-induced alterations in IL-6, IL-1β, TNF-α, MPO, MDA, H<sub>2</sub>O<sub>2</sub>, CAT, SOD, and GSH (<i>p</i> < 0.05). These results indicate that CHE possesses antioxidant properties and inhibits inflammatory factors, thereby protecting the organism from APAP-induced ALI. CHE treatment significantly altered gut microbiota composition, particularly increasing levels of the beneficial bacterium <i>Barnesiella intestinihominis</i> (<i>p</i> < 0.05). In addition, CHE reversed metabolic disturbances and inhibited oxidative and inflammatory signaling pathways. These findings suggest that CHE is a natural hepatoprotective agent that prevents ALI by modulating gut microbiota, related metabolites, oxidative stress, and inflammation. This study provides new insights into CHE as a potential therapeutic approach for ALI.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 9","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466735/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14091063","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chelerythrine (CHE) is the main active component of Chelidonium majus L., possessing excellent antioxidant and anti-inflammatory properties. However, the protective effects of CHE against liver injury and its underlying mechanisms remain unclear. We aimed to investigate the effects of CHE on acute liver injury (ALI) and explore its underlying mechanisms. Mice were orally administered with or without CHE (15 and 30 mg/kg) treatment for 7 days, followed by a single intraperitoneal injection of acetaminophen (APAP, 350 mg/kg). After 24 h, serum, liver, and fecal samples were collected. Then, 16S rRNA gene sequencing, metabolomics, and transcriptomics approaches were employed to investigate the protective effects of CHE against ALI. Finally, we elucidated the role of CHE in restoring gut microbiota and metabolic disorders in the context of ALI. The results showed that CHE significantly inhibited ALT and AST levels (p < 0.001). Furthermore, CHE counteracted APAP-induced alterations in IL-6, IL-1β, TNF-α, MPO, MDA, H2O2, CAT, SOD, and GSH (p < 0.05). These results indicate that CHE possesses antioxidant properties and inhibits inflammatory factors, thereby protecting the organism from APAP-induced ALI. CHE treatment significantly altered gut microbiota composition, particularly increasing levels of the beneficial bacterium Barnesiella intestinihominis (p < 0.05). In addition, CHE reversed metabolic disturbances and inhibited oxidative and inflammatory signaling pathways. These findings suggest that CHE is a natural hepatoprotective agent that prevents ALI by modulating gut microbiota, related metabolites, oxidative stress, and inflammation. This study provides new insights into CHE as a potential therapeutic approach for ALI.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.