Betulinic Acid-Enriched Dillenia indica L. Bark Extract Attenuates UVB-Induced Skin Aging via KEAP1-Mediated Antioxidant Pathways.

IF 6.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bo-Rim Song, Sunghwan Kim, Sang-Han Lee
{"title":"Betulinic Acid-Enriched <i>Dillenia indica</i> L. Bark Extract Attenuates UVB-Induced Skin Aging via KEAP1-Mediated Antioxidant Pathways.","authors":"Bo-Rim Song, Sunghwan Kim, Sang-Han Lee","doi":"10.3390/antiox14091144","DOIUrl":null,"url":null,"abstract":"<p><p>The bark of <i>Dillenia indica</i> L. is a rich source of phenolic and triterpenoid compounds, including betulinic acid (BA), known for their antioxidant and anti-aging properties. This study investigated the antioxidant potential of a BA-enriched extract through a multidisciplinary approach combining computational, experimental, and cell-based evaluations. Molecular docking and molecular dynamics simulations revealed that BA binds stably to Kelch-like ECH-associated protein 1 (KEAP1), suggesting activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Extraction conditions were optimized using response surface methodology (RSM) and artificial neural network (ANN) modeling, yielding the maximum total phenolic content (TPC; 85.33 ± 2.26 mg gallic acid equivalents/g) and total flavonoid content (TFC; 75.60 ± 1.66 mg catechin equivalents/g), with ANN demonstrating superior predictive performance compared to RSM. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) confirmed the presence of BA in the optimized extract. Simulated gastrointestinal digestion revealed reductions in TPC, TFC, and radical scavenging activity during the gastric phase. In ultraviolet B (UVB)-irradiated human keratinocyte (HaCaT) cells, the optimized extract significantly reduced intracellular reactive oxygen species (ROS) and upregulated the KEAP1-Nrf2-heme oxygenase-1 (HO-1) pathway, confirming its antioxidant mechanism. These findings highlight the extract's stability, bioactivity, and mechanistic efficacy, supporting its application as a nutraceutical ingredient for combating oxidative stress and skin aging.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 9","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466404/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14091144","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The bark of Dillenia indica L. is a rich source of phenolic and triterpenoid compounds, including betulinic acid (BA), known for their antioxidant and anti-aging properties. This study investigated the antioxidant potential of a BA-enriched extract through a multidisciplinary approach combining computational, experimental, and cell-based evaluations. Molecular docking and molecular dynamics simulations revealed that BA binds stably to Kelch-like ECH-associated protein 1 (KEAP1), suggesting activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Extraction conditions were optimized using response surface methodology (RSM) and artificial neural network (ANN) modeling, yielding the maximum total phenolic content (TPC; 85.33 ± 2.26 mg gallic acid equivalents/g) and total flavonoid content (TFC; 75.60 ± 1.66 mg catechin equivalents/g), with ANN demonstrating superior predictive performance compared to RSM. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) confirmed the presence of BA in the optimized extract. Simulated gastrointestinal digestion revealed reductions in TPC, TFC, and radical scavenging activity during the gastric phase. In ultraviolet B (UVB)-irradiated human keratinocyte (HaCaT) cells, the optimized extract significantly reduced intracellular reactive oxygen species (ROS) and upregulated the KEAP1-Nrf2-heme oxygenase-1 (HO-1) pathway, confirming its antioxidant mechanism. These findings highlight the extract's stability, bioactivity, and mechanistic efficacy, supporting its application as a nutraceutical ingredient for combating oxidative stress and skin aging.

Abstract Image

Abstract Image

Abstract Image

富含白桦酸的白桦树皮提取物通过keap1介导的抗氧化途径减轻uvb诱导的皮肤衰老。
Dillenia indica L.的树皮富含酚类和三萜化合物,包括白桦酸(BA),以抗氧化和抗衰老而闻名。本研究通过多学科方法,结合计算、实验和基于细胞的评估,研究了富含ba的提取物的抗氧化潜力。分子对接和分子动力学模拟显示,BA与kelch样ECH-associated protein 1 (KEAP1)稳定结合,提示激活了核因子红细胞2相关因子2 (Nrf2)通路。采用响应面法(RSM)和人工神经网络(ANN)模型对提取条件进行优化,得到最大总酚含量(TPC; 85.33±2.26 mg没食子酸/g)和总黄酮含量(TFC; 75.60±1.66 mg儿茶素/g), ANN的预测效果优于RSM。电喷雾电离串联质谱法(ESI-MS/MS)证实了优选提取物中BA的存在。模拟胃肠道消化显示,在胃期,TPC、TFC和自由基清除活性降低。在紫外线B (UVB)照射的人角质细胞(HaCaT)细胞中,优化后的提取物显著降低了细胞内活性氧(ROS),上调了keap1 - nrf2 -血红素加氧酶-1 (HO-1)通路,证实了其抗氧化机制。这些发现突出了提取物的稳定性、生物活性和机械功效,支持其作为抗氧化应激和皮肤衰老的营养成分的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信