So Hee Park, Hee Young Cho, Jin Hyun Jun, Haengseok Song, Ji Yeon Lee
{"title":"Prenatal Melatonin Therapy Enhances Postnatal Lung Development in a Mouse Model of Inflammation-Induced Preterm Birth.","authors":"So Hee Park, Hee Young Cho, Jin Hyun Jun, Haengseok Song, Ji Yeon Lee","doi":"10.3390/antiox14091094","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammation-induced preterm birth (PTB) significantly impacts neonatal development, particularly due to fetal lung immaturity. The lungs undergo critical development both in utero and postnatally, and PTB disrupts this process, leading to impaired pulmonary function. Current treatments for promoting lung maturation in preterm infants have limited efficacy and safety. Melatonin, known for its potent antioxidant and anti-inflammatory properties, has shown promise in preventing PTB, but its effects on fetal and postnatal lung maturation remain unclear. This study evaluated the therapeutic efficacy of melatonin in a mouse model of intrauterine inflammation-induced PTB (IPTB). Pregnant mice (Pregnancy Day 17, [PD17]) were assigned to control, lipopolysaccharide (LPS), and LPS + melatonin groups. LPS (25 µg) was injected into the right uterine horn, with melatonin (10 mg/kg) administered intraperitoneally 30 min prior. Uterine tissues were collected at 6 and 24 h post-LPS administration for molecular and histological analyses. PTB occurred in seven out of eleven (63.6%) IPTB mice within 24 h of LPS injection, whereas melatonin significantly reduced this rate to 25% (2/8). In melatonin-treated mice, the downregulation of pro-inflammatory genes in uterine tissues, restoration of placental blood flow, increased lamellar body counts, and prevention of LPS-induced vacuolation in PD18 fetal lungs were observed. Furthermore, melatonin administration enhanced surfactant protein B expression and improved lung structure. In the offspring of IPTB mice that survived, melatonin further suppressed pro-inflammatory markers and promoted lung septal thickening at postnatal day 3. In conclusion, melatonin prevents PTB, mitigates inflammation, and supports fetal lung maturation in IPTB mice, highlighting its therapeutic potential for improving neonatal pulmonary outcomes.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 9","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466731/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14091094","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammation-induced preterm birth (PTB) significantly impacts neonatal development, particularly due to fetal lung immaturity. The lungs undergo critical development both in utero and postnatally, and PTB disrupts this process, leading to impaired pulmonary function. Current treatments for promoting lung maturation in preterm infants have limited efficacy and safety. Melatonin, known for its potent antioxidant and anti-inflammatory properties, has shown promise in preventing PTB, but its effects on fetal and postnatal lung maturation remain unclear. This study evaluated the therapeutic efficacy of melatonin in a mouse model of intrauterine inflammation-induced PTB (IPTB). Pregnant mice (Pregnancy Day 17, [PD17]) were assigned to control, lipopolysaccharide (LPS), and LPS + melatonin groups. LPS (25 µg) was injected into the right uterine horn, with melatonin (10 mg/kg) administered intraperitoneally 30 min prior. Uterine tissues were collected at 6 and 24 h post-LPS administration for molecular and histological analyses. PTB occurred in seven out of eleven (63.6%) IPTB mice within 24 h of LPS injection, whereas melatonin significantly reduced this rate to 25% (2/8). In melatonin-treated mice, the downregulation of pro-inflammatory genes in uterine tissues, restoration of placental blood flow, increased lamellar body counts, and prevention of LPS-induced vacuolation in PD18 fetal lungs were observed. Furthermore, melatonin administration enhanced surfactant protein B expression and improved lung structure. In the offspring of IPTB mice that survived, melatonin further suppressed pro-inflammatory markers and promoted lung septal thickening at postnatal day 3. In conclusion, melatonin prevents PTB, mitigates inflammation, and supports fetal lung maturation in IPTB mice, highlighting its therapeutic potential for improving neonatal pulmonary outcomes.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.