Alba López, Alicia García, Alejandro Castro-Cegrí, María Segura, Álvaro Benítez, Francisco Palma, Dolores Garrido, Cecilia Martínez, Manuel Jamilena
{"title":"A Genome-Wide Association Study Reveals QTLs and Candidate Genes Associated with the Carotenoid Content in the Flesh of <i>Cucurbita pepo</i> L. Fruit.","authors":"Alba López, Alicia García, Alejandro Castro-Cegrí, María Segura, Álvaro Benítez, Francisco Palma, Dolores Garrido, Cecilia Martínez, Manuel Jamilena","doi":"10.3390/antiox14091090","DOIUrl":null,"url":null,"abstract":"<p><p>Considering the importance of carotenoids in the human diet, their enhancement is a key trait in current breeding programs. This study assessed lutein, zeaxanthin, α-carotene, and β-carotene levels in the flesh of mature fruits from 257 global <i>C. pepo</i> accessions. Lutein and β-carotene were the most prevalent, with top accessions identified for each carotenoid. A panel of 120 accessions with reliable carotenoid contents and genetic diversity was analyzed using 23,111 GBS-generated SNPs in genome-wide association studies (GWAS). Three genomic regions (<i>qtl1, qtl3,</i> and <i>qtl13</i>) on chromosomes 1, 3, and 13 were significantly linked to carotenoid levels, with alternative alleles increasing the carotenoid content, leading to yellowish-orange flesh. Seven candidate genes were identified: <i>CpTIC56</i>, <i>CpHSHP70</i>, and <i>CpPDL8</i>, which regulate carotenoid biosynthesis in chloroplasts; <i>CpSPX</i> and <i>CpPHO1</i>, associated with phosphate homeostasis and carotenoid buildup; <i>CpMYB106</i>, co-expressed with carotenoid biosynthesis genes; and a <i>CpPPR</i> RNA-binding protein. RNA-seq data from yellow- and white-fleshed fruits supported their involvement in carotenoid accumulation. These results improve our understanding of the genetic control of carotenoid buildup in <i>C. pepo</i> fruit, supporting breeding efforts for improved nutritional quality.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 9","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466424/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14091090","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Considering the importance of carotenoids in the human diet, their enhancement is a key trait in current breeding programs. This study assessed lutein, zeaxanthin, α-carotene, and β-carotene levels in the flesh of mature fruits from 257 global C. pepo accessions. Lutein and β-carotene were the most prevalent, with top accessions identified for each carotenoid. A panel of 120 accessions with reliable carotenoid contents and genetic diversity was analyzed using 23,111 GBS-generated SNPs in genome-wide association studies (GWAS). Three genomic regions (qtl1, qtl3, and qtl13) on chromosomes 1, 3, and 13 were significantly linked to carotenoid levels, with alternative alleles increasing the carotenoid content, leading to yellowish-orange flesh. Seven candidate genes were identified: CpTIC56, CpHSHP70, and CpPDL8, which regulate carotenoid biosynthesis in chloroplasts; CpSPX and CpPHO1, associated with phosphate homeostasis and carotenoid buildup; CpMYB106, co-expressed with carotenoid biosynthesis genes; and a CpPPR RNA-binding protein. RNA-seq data from yellow- and white-fleshed fruits supported their involvement in carotenoid accumulation. These results improve our understanding of the genetic control of carotenoid buildup in C. pepo fruit, supporting breeding efforts for improved nutritional quality.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.