Oxidative Stress-Mediated DNA Damage Induced by Ionizing Radiation in Modern Computed Tomography: Evidence for Antioxidant-Based Radioprotective Strategies.
Baltasar Ramos, Jorge Gómez-Cayupán, Isidora Aranis, Esperanza García Tapia, Constanza Coghlan, María-José Ulloa, Santiago Gelerstein Claro, Katherine Urbina, Gonzalo Espinoza, José De Grazia, Jorge Díaz, Prisco Piscitelli, Daniel Castro, Marcia Manterola, Ramón Rodrigo, Camilo G Sotomayor
{"title":"Oxidative Stress-Mediated DNA Damage Induced by Ionizing Radiation in Modern Computed Tomography: Evidence for Antioxidant-Based Radioprotective Strategies.","authors":"Baltasar Ramos, Jorge Gómez-Cayupán, Isidora Aranis, Esperanza García Tapia, Constanza Coghlan, María-José Ulloa, Santiago Gelerstein Claro, Katherine Urbina, Gonzalo Espinoza, José De Grazia, Jorge Díaz, Prisco Piscitelli, Daniel Castro, Marcia Manterola, Ramón Rodrigo, Camilo G Sotomayor","doi":"10.3390/antiox14091085","DOIUrl":null,"url":null,"abstract":"<p><p>Computed tomography (CT) is fundamental to modern medicine, yet ionizing radiation (IR) exposure causes DNA damage. Although often underestimated, at current doses, CT may account for ~5% of new cancer diagnoses. Complementary radioprotective approaches beyond dose reduction are needed. We conducted a prospective observational study to characterize IR-induced oxidative stress (OS)-mediated DNA damage in modern CT to explore potential antioxidant-based radioprotective strategies. In volunteers not exposed to IR (A<sub>NONE</sub>) and in patients with two-phase abdominal-pelvis CT (B<sub>EXPOSURE</sub>), blood samples were collected at T<sub>BASE</sub>-min 0 and T<sub>POST</sub>-min 60 to measure biomarkers of OS (oxidative damage and antioxidant capacity) and DNA damage. Thirty-five subjects (<i>n</i> = 17 A<sub>NONE</sub>/18 B<sub>EXPOSURE</sub>) were studied. Body mass index and DNA damage in T<sub>BASE</sub> were comparable between groups. In A<sub>NONE</sub>, biomarkers of OS and DNA damage did not change between T<sub>BASE</sub> and T<sub>POST</sub> (<i>p</i> > 0.05 for all). In B<sub>EXPOSURE</sub>, DNA damage was significantly increased [15% (-15-60); <i>p</i> < 0.001], which was associated with consistent increased antioxidant enzyme activity [<i>p</i> < 0.05 for all antioxidant enzymes]. In modern CT with relatively low effective dose (ED) levels, a significant increase in DNA damage was observed along with increased antioxidant enzyme activity as defensive response and marker of OS-mediated damage-mediating mechanisms. These findings warrant interventional studies to evaluate antioxidant-based radioprotective strategies.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 9","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466383/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14091085","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Computed tomography (CT) is fundamental to modern medicine, yet ionizing radiation (IR) exposure causes DNA damage. Although often underestimated, at current doses, CT may account for ~5% of new cancer diagnoses. Complementary radioprotective approaches beyond dose reduction are needed. We conducted a prospective observational study to characterize IR-induced oxidative stress (OS)-mediated DNA damage in modern CT to explore potential antioxidant-based radioprotective strategies. In volunteers not exposed to IR (ANONE) and in patients with two-phase abdominal-pelvis CT (BEXPOSURE), blood samples were collected at TBASE-min 0 and TPOST-min 60 to measure biomarkers of OS (oxidative damage and antioxidant capacity) and DNA damage. Thirty-five subjects (n = 17 ANONE/18 BEXPOSURE) were studied. Body mass index and DNA damage in TBASE were comparable between groups. In ANONE, biomarkers of OS and DNA damage did not change between TBASE and TPOST (p > 0.05 for all). In BEXPOSURE, DNA damage was significantly increased [15% (-15-60); p < 0.001], which was associated with consistent increased antioxidant enzyme activity [p < 0.05 for all antioxidant enzymes]. In modern CT with relatively low effective dose (ED) levels, a significant increase in DNA damage was observed along with increased antioxidant enzyme activity as defensive response and marker of OS-mediated damage-mediating mechanisms. These findings warrant interventional studies to evaluate antioxidant-based radioprotective strategies.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.