Mahrukh Mahrukh, Sen-Hui Liu, Jun Wang, Sohail Husnain, Cheng-Chung Yang, Xiao-Tao Luo, Chang-Jiu Li
{"title":"The Numerical Analysis of the Three Differently Modified Ar-H2 Atmospheric Plasma Spray Torches Toward Oxidation Control of Spraying Metal Particles","authors":"Mahrukh Mahrukh, Sen-Hui Liu, Jun Wang, Sohail Husnain, Cheng-Chung Yang, Xiao-Tao Luo, Chang-Jiu Li","doi":"10.1007/s11090-025-10562-3","DOIUrl":null,"url":null,"abstract":"<div><p>The modeling and numerical simulation of plasma jet dynamics inside and outside the modified Ar-H<sub>2</sub> air plasma spray torches were carried out. The simulation was made for three different anode nozzle configurations geometrically modified with the internal powder injector to generate ultra-high temperature oxide-free molten metal droplets. The effects of various working conditions, including nozzle geometry, and hydrogen mass flow rates on the plasma jet temperatures, the corresponding flow fields, and plasma compositions were examined. It was found that adding a diverging section or a converging section inside the torch has a major effect on the plasma jet temperature, velocity, and overall mixing of atmospheric oxygen into the plasma jet. Thus, the shape change of the internal torch section can play a major role in regulating the plasma jet characteristics that consequently control particle oxidation. Furthermore, the compositions of plasma jets were also simulated to examine the evolution of the oxygen along the plasma jet axis. The experimental results were used for the model validations and to investigate the spray distance-dependent oxygen content in plasma jets. The reaction between O<sub>2</sub> and H<sub>2</sub> is modeled, and it was recognized that an increment in H<sub>2</sub> significantly increases the oxygen consumption in the formation of water vapor in the near spray distances, and higher H<sub>2</sub> contents would effectively control the oxidation of spraying particles along using divergent nozzle design.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 4","pages":"1063 - 1089"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-025-10562-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The modeling and numerical simulation of plasma jet dynamics inside and outside the modified Ar-H2 air plasma spray torches were carried out. The simulation was made for three different anode nozzle configurations geometrically modified with the internal powder injector to generate ultra-high temperature oxide-free molten metal droplets. The effects of various working conditions, including nozzle geometry, and hydrogen mass flow rates on the plasma jet temperatures, the corresponding flow fields, and plasma compositions were examined. It was found that adding a diverging section or a converging section inside the torch has a major effect on the plasma jet temperature, velocity, and overall mixing of atmospheric oxygen into the plasma jet. Thus, the shape change of the internal torch section can play a major role in regulating the plasma jet characteristics that consequently control particle oxidation. Furthermore, the compositions of plasma jets were also simulated to examine the evolution of the oxygen along the plasma jet axis. The experimental results were used for the model validations and to investigate the spray distance-dependent oxygen content in plasma jets. The reaction between O2 and H2 is modeled, and it was recognized that an increment in H2 significantly increases the oxygen consumption in the formation of water vapor in the near spray distances, and higher H2 contents would effectively control the oxidation of spraying particles along using divergent nozzle design.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.