A survey of deep learning for industrial visual anomaly detection

IF 13.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhuo Li, Yuhao Yan, Xiangheng Wang, Yifei Ge, Lin Meng
{"title":"A survey of deep learning for industrial visual anomaly detection","authors":"Zhuo Li,&nbsp;Yuhao Yan,&nbsp;Xiangheng Wang,&nbsp;Yifei Ge,&nbsp;Lin Meng","doi":"10.1007/s10462-025-11287-7","DOIUrl":null,"url":null,"abstract":"<div><p>Industrial visual anomaly detection is critical for ensuring system reliability, safety, and efficiency. This paper presents a comprehensive survey of state-of-the-art anomaly detection techniques, analyzing methodologies, implementations, and recent advancements. Our survey aims to accelerate researchers’ understanding of emerging trends while providing a structured foundation for newcomers. We systematically review 196 recent papers covering five learning strategies, including fully supervised, semi-supervised, self-supervised, weakly supervised, and unsupervised approaches. This paper provides a detailed introduction to twelve industrial anomaly detection methods, revealing their theoretical foundations, technical principles, and practical applications. Additionally, we provide a detailed overview to 2D and 3D datasets for industrial visual anomaly detection. In addition, we critically analyze and summarize the experimental results, identify key performance indicators, and discuss the latest trends in the field of industrial anomaly detection. Beyond analysis, we contribute actionable insights for selecting optimal models for real-world deployment. Finally, we highlight open challenges and outline future research directions to drive innovation in this evolving field. The detailed resources are available at https://github.com/IHPCRits/IAD-Survey.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 9","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11287-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11287-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Industrial visual anomaly detection is critical for ensuring system reliability, safety, and efficiency. This paper presents a comprehensive survey of state-of-the-art anomaly detection techniques, analyzing methodologies, implementations, and recent advancements. Our survey aims to accelerate researchers’ understanding of emerging trends while providing a structured foundation for newcomers. We systematically review 196 recent papers covering five learning strategies, including fully supervised, semi-supervised, self-supervised, weakly supervised, and unsupervised approaches. This paper provides a detailed introduction to twelve industrial anomaly detection methods, revealing their theoretical foundations, technical principles, and practical applications. Additionally, we provide a detailed overview to 2D and 3D datasets for industrial visual anomaly detection. In addition, we critically analyze and summarize the experimental results, identify key performance indicators, and discuss the latest trends in the field of industrial anomaly detection. Beyond analysis, we contribute actionable insights for selecting optimal models for real-world deployment. Finally, we highlight open challenges and outline future research directions to drive innovation in this evolving field. The detailed resources are available at https://github.com/IHPCRits/IAD-Survey.

深度学习在工业视觉异常检测中的研究进展
工业视觉异常检测是保证系统可靠性、安全性和效率的关键。本文介绍了最先进的异常检测技术,分析方法,实现和最新进展的全面调查。我们的调查旨在加速研究人员对新兴趋势的理解,同时为新来者提供结构化的基础。我们系统地回顾了196篇最近的论文,涵盖了五种学习策略,包括完全监督、半监督、自监督、弱监督和无监督方法。本文详细介绍了12种工业异常检测方法,揭示了它们的理论基础、技术原理和实际应用。此外,我们还提供了用于工业视觉异常检测的2D和3D数据集的详细概述。此外,我们批判性地分析和总结了实验结果,确定了关键性能指标,并讨论了工业异常检测领域的最新趋势。除了分析之外,我们还提供了可操作的见解,以便为实际部署选择最佳模型。最后,我们强调了开放的挑战,并概述了未来的研究方向,以推动这一不断发展的领域的创新。详细的资源可以在https://github.com/IHPCRits/IAD-Survey上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信