{"title":"A Novel Co Coordinated Highly Dispersed Nano Ag/HAP Catalysts in Enhanced Toluene Catalytic Oxidation with Non-Thermal Plasma","authors":"Xuemin Wang, Jiahui Li, Pai Lu, Shixin Liu, Shuyao Zhang, Enpeng Deng, Yuxin Miao, Zhen Zhao","doi":"10.1007/s11090-025-10570-3","DOIUrl":null,"url":null,"abstract":"<div><p>As a volatile organic pollutant, toluene is difficult to be activated and removed at low temperature by conventional thermal catalytic oxidation. Therefore, we reported an Ag-Co bimetallic catalyst which is supported on hydroxyapatite (HAP) and prepared by the equal-volume distribution impregnation method and investigated its performance in toluene oxidation. Enhanced toluene removal was achieved by synergizing plasma with 3Ag/15Co/HAP catalysts at low temperatures, which also improved CO<sub>2</sub> selectivity. Toluene conversion and CO<sub>2</sub> selectivity peaked at 100% and 88%, respectively, at the input power of 13 W, while the removal process demonstrated good stability during a 32 h test. The uniform dispersion of Ag NPs on the carrier facilitates the conversion of filamentary discharge into a more uniform and efficient discharge, promoting the activation of surface oxygen and thereby improving toluene removal efficiency. Additionally, the interaction between Ag and Co generated more surface-active oxygen and lattice defects on the catalyst surface, resulting in excellent low-temperature reducibility.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 4","pages":"1191 - 1204"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-025-10570-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As a volatile organic pollutant, toluene is difficult to be activated and removed at low temperature by conventional thermal catalytic oxidation. Therefore, we reported an Ag-Co bimetallic catalyst which is supported on hydroxyapatite (HAP) and prepared by the equal-volume distribution impregnation method and investigated its performance in toluene oxidation. Enhanced toluene removal was achieved by synergizing plasma with 3Ag/15Co/HAP catalysts at low temperatures, which also improved CO2 selectivity. Toluene conversion and CO2 selectivity peaked at 100% and 88%, respectively, at the input power of 13 W, while the removal process demonstrated good stability during a 32 h test. The uniform dispersion of Ag NPs on the carrier facilitates the conversion of filamentary discharge into a more uniform and efficient discharge, promoting the activation of surface oxygen and thereby improving toluene removal efficiency. Additionally, the interaction between Ag and Co generated more surface-active oxygen and lattice defects on the catalyst surface, resulting in excellent low-temperature reducibility.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.