Vladimír Scholtz, Jana Jirešová, Eliška Lokajová, Tereza Měřínská, Laura Thonová, Božena Šerá
{"title":"Is Plasma Activated Water Really Magical? A Reflection on the Phenomenon","authors":"Vladimír Scholtz, Jana Jirešová, Eliška Lokajová, Tereza Měřínská, Laura Thonová, Božena Šerá","doi":"10.1007/s11090-025-10565-0","DOIUrl":null,"url":null,"abstract":"<div><p>A reflection on the phenomenon of plasma-activated water (PAW), its brief history and properties. PAW arises from the accumulation of reactive plasma products (mainly H<sub>2</sub>O<sub>2</sub>, NO<sub>2</sub><sup>−</sup>, NO<sub>3</sub><sup>−</sup>, O<sub>3</sub> and sometimes HNO, ONOOH) in water and has many interesting and beneficial properties on both living and non-living biological objects. It has attracted considerable attention in the last 15 years and raises the question whether it might not be simpler to prepare it artificially (APAW) directly by mixing chemical compounds. There are several papers which have compared the effects of PAW with APAW and conclude that there is probably no significant difference. In this paper, we conclude that the preparation of PAW is several times more expensive than that of APAW. However, we also note that there may be specific situations in which the production of PAW could be advantageous, such as its efficient role in storing energy in the form of nitrate ions, which can serve as a nutritional source for plants.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 4","pages":"1337 - 1351"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11090-025-10565-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-025-10565-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A reflection on the phenomenon of plasma-activated water (PAW), its brief history and properties. PAW arises from the accumulation of reactive plasma products (mainly H2O2, NO2−, NO3−, O3 and sometimes HNO, ONOOH) in water and has many interesting and beneficial properties on both living and non-living biological objects. It has attracted considerable attention in the last 15 years and raises the question whether it might not be simpler to prepare it artificially (APAW) directly by mixing chemical compounds. There are several papers which have compared the effects of PAW with APAW and conclude that there is probably no significant difference. In this paper, we conclude that the preparation of PAW is several times more expensive than that of APAW. However, we also note that there may be specific situations in which the production of PAW could be advantageous, such as its efficient role in storing energy in the form of nitrate ions, which can serve as a nutritional source for plants.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.