Trygve Aarnæs, Roar Jensen, Robert Fritzsch, Halvor Dalaker
{"title":"Reduction of MnO Using a Thermal Hydrogen Plasma","authors":"Trygve Aarnæs, Roar Jensen, Robert Fritzsch, Halvor Dalaker","doi":"10.1007/s11090-025-10575-y","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogen (H<sub>2</sub>) plays an important role in meeting the demand for carbon-free steels. When reduction is done with H<sub>2</sub>, harmless water is released as the off-gas, instead of CO<sub>2</sub> generated by reduction with carbon. While steel can be produced using H<sub>2</sub>, many of its alloying elements cannot. As a result, fully carbon-free steel production necessitates a carbon-free production of its alloying elements. An important alloying element for steel, manganese (Mn), is subject to thermodynamic limitations that makes reduction with H<sub>2</sub> infeasible. If instead a much more reactive hydrogen plasma is used these thermodynamic limitations would disappear. The current work shows an in-depth investigation into the reduction of manganese oxide (MnO) by a thermal hydrogen plasma under various conditions. By passing H<sub>2</sub> through a plasma torch before it contacts an MnO-containing slag, formation of metallic Mn was achieved with a hydrogen-based reductant. Investigating the reduced samples with an electron probe micro analyser (EPMA) the amount of Mn formation in different conditions is mapped out. The reduction was found to be favoured when the torch was operated with a transferred arc mode, and for slags high in MnO, if the melting point was not too high. While the research into reduction of stable oxides with thermal hydrogen plasmas is still in an early stage and there are many unanswered questions, the work presented demonstrates the possibility of hydrogen-based manganese production.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 5","pages":"1353 - 1367"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11090-025-10575-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-025-10575-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen (H2) plays an important role in meeting the demand for carbon-free steels. When reduction is done with H2, harmless water is released as the off-gas, instead of CO2 generated by reduction with carbon. While steel can be produced using H2, many of its alloying elements cannot. As a result, fully carbon-free steel production necessitates a carbon-free production of its alloying elements. An important alloying element for steel, manganese (Mn), is subject to thermodynamic limitations that makes reduction with H2 infeasible. If instead a much more reactive hydrogen plasma is used these thermodynamic limitations would disappear. The current work shows an in-depth investigation into the reduction of manganese oxide (MnO) by a thermal hydrogen plasma under various conditions. By passing H2 through a plasma torch before it contacts an MnO-containing slag, formation of metallic Mn was achieved with a hydrogen-based reductant. Investigating the reduced samples with an electron probe micro analyser (EPMA) the amount of Mn formation in different conditions is mapped out. The reduction was found to be favoured when the torch was operated with a transferred arc mode, and for slags high in MnO, if the melting point was not too high. While the research into reduction of stable oxides with thermal hydrogen plasmas is still in an early stage and there are many unanswered questions, the work presented demonstrates the possibility of hydrogen-based manganese production.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.