Solution Plasma as A Tool for the Synthesis of Nanostructures and Purification from Contaminants. A Brief Review

IF 2.5 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL
Anton Manakhov, Subhash Ayirala, Nikolay Sirotkin, Anna Khlyustova
{"title":"Solution Plasma as A Tool for the Synthesis of Nanostructures and Purification from Contaminants. A Brief Review","authors":"Anton Manakhov,&nbsp;Subhash Ayirala,&nbsp;Nikolay Sirotkin,&nbsp;Anna Khlyustova","doi":"10.1007/s11090-025-10561-4","DOIUrl":null,"url":null,"abstract":"<div><p>The intensive operations of enterprises across various sectors, such as textiles, chemicals, and electronics, generate significant amounts of contaminated water discharges, commonly referred to as industrial wastewater. The application of Advanced Oxidative Technologies, including ozonation, UV irradiation, Fenton processes, and plasma chemistry, is becoming increasingly prevalent for purification purposes. Among these methods, plasma chemistry is regarded as the most promising due to its integration of physical and chemical effects. The combination of plasma with liquids activates the liquid and generates chemically reactive species (atoms, radicals, ions, etc.), whose interactions facilitate the degradation of organic compounds, the binding and precipitation of inorganic ions, and the synthesis of new structures. This study provides a concise review of the use of plasma in contact with liquids for the removal of organic and inorganic components from wastewater. The development of oxide structures during plasma combustion positively influences the removal of impurities.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 4","pages":"1293 - 1312"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-025-10561-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The intensive operations of enterprises across various sectors, such as textiles, chemicals, and electronics, generate significant amounts of contaminated water discharges, commonly referred to as industrial wastewater. The application of Advanced Oxidative Technologies, including ozonation, UV irradiation, Fenton processes, and plasma chemistry, is becoming increasingly prevalent for purification purposes. Among these methods, plasma chemistry is regarded as the most promising due to its integration of physical and chemical effects. The combination of plasma with liquids activates the liquid and generates chemically reactive species (atoms, radicals, ions, etc.), whose interactions facilitate the degradation of organic compounds, the binding and precipitation of inorganic ions, and the synthesis of new structures. This study provides a concise review of the use of plasma in contact with liquids for the removal of organic and inorganic components from wastewater. The development of oxide structures during plasma combustion positively influences the removal of impurities.

溶液等离子体作为纳米结构合成和污染物净化的工具。简要回顾
纺织、化工和电子等各行业企业的集约化经营产生了大量的污水排放,通常被称为工业废水。先进的氧化技术,包括臭氧化、紫外线照射、芬顿工艺和等离子体化学,在净化方面的应用越来越普遍。在这些方法中,等离子体化学因其综合了物理和化学效应而被认为是最有前途的。等离子体与液体结合激活液体,产生化学反应物质(原子、自由基、离子等),它们的相互作用促进有机物的降解、无机离子的结合和沉淀以及新结构的合成。本研究简要介绍了等离子体与液体接触去除废水中有机和无机成分的应用。等离子体燃烧过程中氧化物结构的发展对杂质的去除有积极的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信