Generative AI: a double-edged sword in the cyber threat landscape

IF 13.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Werisha Ibrar, Danish Mahmood, Ahmad Sami Al-Shamayleh, Ghufran Ahmed, Salman Z. Alharthi, Adnan Akhunzada
{"title":"Generative AI: a double-edged sword in the cyber threat landscape","authors":"Werisha Ibrar,&nbsp;Danish Mahmood,&nbsp;Ahmad Sami Al-Shamayleh,&nbsp;Ghufran Ahmed,&nbsp;Salman Z. Alharthi,&nbsp;Adnan Akhunzada","doi":"10.1007/s10462-025-11285-9","DOIUrl":null,"url":null,"abstract":"<div><p>Generative AI’s swift progress advances onto profound cybersecurity dilemmas. Its usage by malevolent entities to automate intricate malware creation poses a significant threat, circumventing conventional defensive measures. This paradigm shift enables the generation of polymorphic malware, eluding signature-based detection and facilitating precision-targeted assaults. The democratization of Generative AI exacerbates these threats by extending advanced capabilities to a broader spectrum of malicious actors. A comprehensive examination of AI-generated malware’s prevalence, and its repercussions is imperative to fortify cyber resilience. Such scrutiny informs proactive defense strategies vital for safeguarding digital assets within increasingly interconnected systems. Robust threat intelligence frameworks and AI-centric defensive mechanisms emerge as imperative shields against evolving cyber perils. Addressing this emergent challenge stands as an indispensable endeavor in contemporary cybersecurity discourse.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 9","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11285-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11285-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Generative AI’s swift progress advances onto profound cybersecurity dilemmas. Its usage by malevolent entities to automate intricate malware creation poses a significant threat, circumventing conventional defensive measures. This paradigm shift enables the generation of polymorphic malware, eluding signature-based detection and facilitating precision-targeted assaults. The democratization of Generative AI exacerbates these threats by extending advanced capabilities to a broader spectrum of malicious actors. A comprehensive examination of AI-generated malware’s prevalence, and its repercussions is imperative to fortify cyber resilience. Such scrutiny informs proactive defense strategies vital for safeguarding digital assets within increasingly interconnected systems. Robust threat intelligence frameworks and AI-centric defensive mechanisms emerge as imperative shields against evolving cyber perils. Addressing this emergent challenge stands as an indispensable endeavor in contemporary cybersecurity discourse.

生成式人工智能:网络威胁领域的双刃剑
生成式人工智能的迅速发展带来了深刻的网络安全困境。恶意实体使用它来自动创建复杂的恶意软件构成了重大威胁,绕过了传统的防御措施。这种范式转变使多态恶意软件的生成成为可能,从而避开基于签名的检测,促进精确目标攻击。生成式人工智能的民主化通过将高级功能扩展到更广泛的恶意行为者,加剧了这些威胁。全面检查人工智能生成的恶意软件的流行程度及其影响,对于加强网络弹性至关重要。这种审查为在日益互联的系统中保护数字资产提供了至关重要的主动防御策略。强大的威胁情报框架和以人工智能为中心的防御机制成为抵御不断演变的网络危险的必要屏障。解决这一新兴挑战是当代网络安全话语中不可或缺的努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信