Xudong He , Feiyan Yang , Guangfan Qu , Hanzhi Zhang , Ming Yi , Xu Wang , Shuguo Sun
{"title":"Integrated microbial and proteomic analysis elucidates quality degradation mechanisms of fresh milk through the industrial processing stage","authors":"Xudong He , Feiyan Yang , Guangfan Qu , Hanzhi Zhang , Ming Yi , Xu Wang , Shuguo Sun","doi":"10.1016/j.fochx.2025.103062","DOIUrl":null,"url":null,"abstract":"<div><div>Fresh milk quality deterioration during processing is a major dairy challenge, with microbial-driven protein degradation mechanisms unclear. This study pioneers an integrated microbiome-proteome approach to systematically elucidate the dynamic interplay between microbial succession and protein quality changes during industrial processing. Microbial community analysis revealed oscillatory richness, with 2.3-fold and 1.8-fold increases during pre-treatment (PL) and refrigerated transport (RC), respectively. Pseudomonas (12.4 % → 31.7 %) and Acinetobacter (8.1 % → 19.3 %) dominated key phases, with proteomics showing significant nutrient loss (IgM: −69.8 %; IgG: −54.15 %). Integrating microbial metagenomics with proteolytic pathway analysis identified proteases from Pseudomonas and Acinetobacter as key drivers of protein degradation (68 % activity). Pasteurization cut microbial load by 82 % but paradoxically intensified nutrient loss via protein denaturation. Crucially, our data establish a time-dependent degradation model, revealing that combined microbial enzymatic action and thermal effects account for 76 % of total protein hydrolysis, providing a theoretical framework for developing targeted intervention strategies in dairy processing optimization.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"31 ","pages":"Article 103062"},"PeriodicalIF":8.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157525009095","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Fresh milk quality deterioration during processing is a major dairy challenge, with microbial-driven protein degradation mechanisms unclear. This study pioneers an integrated microbiome-proteome approach to systematically elucidate the dynamic interplay between microbial succession and protein quality changes during industrial processing. Microbial community analysis revealed oscillatory richness, with 2.3-fold and 1.8-fold increases during pre-treatment (PL) and refrigerated transport (RC), respectively. Pseudomonas (12.4 % → 31.7 %) and Acinetobacter (8.1 % → 19.3 %) dominated key phases, with proteomics showing significant nutrient loss (IgM: −69.8 %; IgG: −54.15 %). Integrating microbial metagenomics with proteolytic pathway analysis identified proteases from Pseudomonas and Acinetobacter as key drivers of protein degradation (68 % activity). Pasteurization cut microbial load by 82 % but paradoxically intensified nutrient loss via protein denaturation. Crucially, our data establish a time-dependent degradation model, revealing that combined microbial enzymatic action and thermal effects account for 76 % of total protein hydrolysis, providing a theoretical framework for developing targeted intervention strategies in dairy processing optimization.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.