Transformed wavelets for motor imagery EEG classification using hybrid CNN-modified vision transformer: an exploratory study of MI EEG.

IF 1.6 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Balendra, Neeraj Sharma, Shiru Sharma
{"title":"Transformed wavelets for motor imagery EEG classification using hybrid CNN-modified vision transformer: an exploratory study of MI EEG.","authors":"Balendra, Neeraj Sharma, Shiru Sharma","doi":"10.1080/10255842.2025.2563351","DOIUrl":null,"url":null,"abstract":"<p><p>Wavelets capture signal characteristics across time and frequency, but traditional wavelets suffer from high time-bandwidth products (TBP), limiting feature discrimination in EEG classification. We propose transformed wavelets with improved TBP and frequency bandwidth, outperforming Morlet by 0.04 and 0.20, respectively. Using datasets BCI Competition IV 2a, 2b, and CLA, we evaluated both fundamental and transformed wavelets with a modified vision transformer (MViT). Enhanced scalograms generated through local mean and principal component analysis (PCA) consistently outperformed raw scalograms. A hybrid convolutional neural network (CNN)-MViT achieved 82.35% inter-subject and 89.02% intra-subject accuracy, with 3-4% average gains in motor imagery EEG decoding.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-18"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2563351","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Wavelets capture signal characteristics across time and frequency, but traditional wavelets suffer from high time-bandwidth products (TBP), limiting feature discrimination in EEG classification. We propose transformed wavelets with improved TBP and frequency bandwidth, outperforming Morlet by 0.04 and 0.20, respectively. Using datasets BCI Competition IV 2a, 2b, and CLA, we evaluated both fundamental and transformed wavelets with a modified vision transformer (MViT). Enhanced scalograms generated through local mean and principal component analysis (PCA) consistently outperformed raw scalograms. A hybrid convolutional neural network (CNN)-MViT achieved 82.35% inter-subject and 89.02% intra-subject accuracy, with 3-4% average gains in motor imagery EEG decoding.

基于混合cnn -改进视觉变换的变换小波运动图像脑电分类:一种MI脑电的探索性研究。
小波可以捕获跨时间和频率的信号特征,但传统的小波具有高时间带宽积(TBP),限制了脑电信号分类中的特征识别。我们提出了改进TBP和频率带宽的变换小波,分别比Morlet高0.04和0.20。使用BCI Competition IV 2a, 2b和CLA数据集,我们使用改进的视觉转换器(MViT)评估基本小波和变换小波。通过局部均值和主成分分析(PCA)生成的增强尺度图始终优于原始尺度图。混合卷积神经网络(CNN)-MViT在被试间和被试内的解码准确率分别达到82.35%和89.02%,运动意象EEG解码平均提高3-4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信