Targeting Bcl3/NF-κB p50 Pathway for Neuroinflammation Attenuation and RGCs Protection in Retinal Ischemia/Reperfusion Injury.

IF 4.7 2区 医学 Q1 OPHTHALMOLOGY
Meini Chen, Xuan Zhang, Zhou Zeng, Cong Fan, Si Chen, Chao Quan, Jiachang Chen, Mengling You, Xiaobo Xia
{"title":"Targeting Bcl3/NF-κB p50 Pathway for Neuroinflammation Attenuation and RGCs Protection in Retinal Ischemia/Reperfusion Injury.","authors":"Meini Chen, Xuan Zhang, Zhou Zeng, Cong Fan, Si Chen, Chao Quan, Jiachang Chen, Mengling You, Xiaobo Xia","doi":"10.1167/iovs.66.12.63","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Retinal ischemia/reperfusion (IR) injury caused by pathologically high intraocular pressure (ph-IOP) induces excessive inflammation, contributing to retinal ganglion cell (RGC) death in glaucoma. Lowering IOP alone is insufficient, highlighting the need for neuroprotective strategies. Resveratrol (RSV) exhibits anti-inflammatory and neuroprotective effects, but its molecular mechanisms remain unclear. This study aims to evaluate RSV's neuroprotective role and underlying mechanisms in retinal IR injury.</p><p><strong>Methods: </strong>Retinal morphology and RGC survival were assessed via immunofluorescence and hematoxylin and eosin (H&E) staining. Retinal function was evaluated using flash visual evoked potential (F-VEP) and flash electroretinogram (F-ERG). Inflammation and microglial activation were analyzed by quantitative real-time PCR (qRT-PCR) and immunohistochemistry. Pyroptosis and apoptosis were examined using Western blotting, TUNEL staining, and electron microscopy. RNA sequencing, qRT-PCR, and Western blotting identified molecular pathways.</p><p><strong>Results: </strong>RSV significantly protected RGCs and preserved retinal function. It reduced inflammation by inhibiting microglial activation and redistribution. Electron microscopy confirmed its protective effects against apoptosis and pyroptosis. Most importantly, we identified the Bcl3/NF-κB p50 pathway as a key target of RSV. Using the Bcl3-NF-κB p50-specific inhibitor JS-6, we validated this pathway's role in reducing neuroinflammation, pyroptosis, and apoptosis.</p><p><strong>Conclusions: </strong>This study provides insights into RSV's molecular mechanisms and identifies new therapeutic targets for glaucoma.</p>","PeriodicalId":14620,"journal":{"name":"Investigative ophthalmology & visual science","volume":"66 12","pages":"63"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12489864/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative ophthalmology & visual science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/iovs.66.12.63","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Retinal ischemia/reperfusion (IR) injury caused by pathologically high intraocular pressure (ph-IOP) induces excessive inflammation, contributing to retinal ganglion cell (RGC) death in glaucoma. Lowering IOP alone is insufficient, highlighting the need for neuroprotective strategies. Resveratrol (RSV) exhibits anti-inflammatory and neuroprotective effects, but its molecular mechanisms remain unclear. This study aims to evaluate RSV's neuroprotective role and underlying mechanisms in retinal IR injury.

Methods: Retinal morphology and RGC survival were assessed via immunofluorescence and hematoxylin and eosin (H&E) staining. Retinal function was evaluated using flash visual evoked potential (F-VEP) and flash electroretinogram (F-ERG). Inflammation and microglial activation were analyzed by quantitative real-time PCR (qRT-PCR) and immunohistochemistry. Pyroptosis and apoptosis were examined using Western blotting, TUNEL staining, and electron microscopy. RNA sequencing, qRT-PCR, and Western blotting identified molecular pathways.

Results: RSV significantly protected RGCs and preserved retinal function. It reduced inflammation by inhibiting microglial activation and redistribution. Electron microscopy confirmed its protective effects against apoptosis and pyroptosis. Most importantly, we identified the Bcl3/NF-κB p50 pathway as a key target of RSV. Using the Bcl3-NF-κB p50-specific inhibitor JS-6, we validated this pathway's role in reducing neuroinflammation, pyroptosis, and apoptosis.

Conclusions: This study provides insights into RSV's molecular mechanisms and identifies new therapeutic targets for glaucoma.

Bcl3/NF-κB p50通路在视网膜缺血再灌注损伤中的神经炎症衰减及rgc保护作用
目的:青光眼病理性高眼压(ph-IOP)引起的视网膜缺血/再灌注(IR)损伤诱导过度炎症,导致视网膜神经节细胞(RGC)死亡。单纯降低IOP是不够的,因此需要神经保护策略。白藜芦醇(RSV)具有抗炎和神经保护作用,但其分子机制尚不清楚。本研究旨在探讨RSV在视网膜IR损伤中的神经保护作用及其机制。方法:采用免疫荧光法、苏木精和伊红(H&E)染色法观察视网膜形态和RGC存活。采用闪烁视觉诱发电位(F-VEP)和闪烁视网膜电图(F-ERG)评价视网膜功能。采用实时荧光定量PCR (qRT-PCR)和免疫组织化学分析炎症反应和小胶质细胞活化情况。采用Western blotting、TUNEL染色和电镜观察焦亡和凋亡情况。RNA测序、qRT-PCR和Western blotting鉴定了分子通路。结果:RSV对RGCs有明显保护作用,视网膜功能得以保存。它通过抑制小胶质细胞的激活和再分布来减轻炎症。电镜观察证实其对细胞凋亡和焦亡具有保护作用。最重要的是,我们发现Bcl3/NF-κB p50通路是RSV的关键靶点。利用Bcl3-NF-κB p50特异性抑制剂JS-6,我们验证了该途径在减少神经炎症、焦亡和细胞凋亡中的作用。结论:本研究揭示了RSV的分子机制,并确定了青光眼的新治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
4.50%
发文量
339
审稿时长
1 months
期刊介绍: Investigative Ophthalmology & Visual Science (IOVS), published as ready online, is a peer-reviewed academic journal of the Association for Research in Vision and Ophthalmology (ARVO). IOVS features original research, mostly pertaining to clinical and laboratory ophthalmology and vision research in general.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信