MAAPO: an innovative membrane algorithm based on artificial protozoa optimizer for multilevel threshold image segmentation

IF 13.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiaopeng Wang, Václav Snášel, Seyedali Mirjalili, Jeng-Shyang Pan
{"title":"MAAPO: an innovative membrane algorithm based on artificial protozoa optimizer for multilevel threshold image segmentation","authors":"Xiaopeng Wang,&nbsp;Václav Snášel,&nbsp;Seyedali Mirjalili,&nbsp;Jeng-Shyang Pan","doi":"10.1007/s10462-025-11319-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a novel membrane algorithm based on artificial protozoa optimizer (MAAPO) for global optimization problems. The artificial protozoa optimizer (APO) is adopted as the base meta-heuristic algorithm due to its novelty and competitive performance. MAAPO integrates two key innovations: (1) a membrane computing (MC) framework that introduces a parallel distributed paradigm to improve population diversity and search dynamics, and (2) an enhanced autotrophic model within APO that uses a roulette-based fitness-distance balance (RFDB) mechanism for adaptive reference point selection. These strategies collectively enhance the algorithm’s exploration-exploitation balance and global search capabilities. To validate its performance, MAAPO is tested against 12 advanced algorithms on the CEC2017 test suite, and further applied to the multilevel thresholding image segmentation problem using Otsu and Kapur entropy as objective functions. The quality of segmented images is assessed using peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and feature similarity index (FSIM) metrics. Experimental results demonstrate that MAAPO outperforms its counterparts, delivering superior segmentation quality. This research on MAAPO contributes an effective enhancement strategy to meta-heuristic algorithms and introduces a novel, highly applicable approach for complex image segmentation tasks. The source codes of MAAPO are publicly available at https://ww2.mathworks.cn/matlabcentral/fileexchange/181534-maapo.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 10","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11319-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11319-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel membrane algorithm based on artificial protozoa optimizer (MAAPO) for global optimization problems. The artificial protozoa optimizer (APO) is adopted as the base meta-heuristic algorithm due to its novelty and competitive performance. MAAPO integrates two key innovations: (1) a membrane computing (MC) framework that introduces a parallel distributed paradigm to improve population diversity and search dynamics, and (2) an enhanced autotrophic model within APO that uses a roulette-based fitness-distance balance (RFDB) mechanism for adaptive reference point selection. These strategies collectively enhance the algorithm’s exploration-exploitation balance and global search capabilities. To validate its performance, MAAPO is tested against 12 advanced algorithms on the CEC2017 test suite, and further applied to the multilevel thresholding image segmentation problem using Otsu and Kapur entropy as objective functions. The quality of segmented images is assessed using peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and feature similarity index (FSIM) metrics. Experimental results demonstrate that MAAPO outperforms its counterparts, delivering superior segmentation quality. This research on MAAPO contributes an effective enhancement strategy to meta-heuristic algorithms and introduces a novel, highly applicable approach for complex image segmentation tasks. The source codes of MAAPO are publicly available at https://ww2.mathworks.cn/matlabcentral/fileexchange/181534-maapo.

MAAPO:一种基于人工原生动物优化器的创新膜算法,用于多级阈值图像分割
提出了一种基于人工原生动物优化器(MAAPO)的膜算法求解全局优化问题。采用人工原生动物优化器(artificial protozoa optimizer, APO)作为基础元启发式算法,具有新颖性和竞争性。MAAPO集成了两个关键创新:(1)膜计算(MC)框架,引入了并行分布式范式,以改善种群多样性和搜索动态;(2)APO内部的增强自营养模型,使用基于轮盘赌的适应度-距离平衡(RFDB)机制进行自适应参考点选择。这些策略共同增强了算法的探索利用平衡和全局搜索能力。为了验证其性能,在CEC2017测试套件上对MAAPO进行了12种高级算法的测试,并以Otsu和Kapur熵为目标函数进一步应用于多级阈值图像分割问题。使用峰值信噪比(PSNR)、结构相似指数(SSIM)和特征相似指数(FSIM)指标评估分割图像的质量。实验结果表明,MAAPO算法在分割质量上优于同类算法。MAAPO的研究为元启发式算法提供了一种有效的增强策略,并为复杂的图像分割任务引入了一种新颖的、高度适用的方法。MAAPO的源代码可在https://ww2.mathworks.cn/matlabcentral/fileexchange/181534-maapo上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信