Cyril Picard, Kristen M. Edwards, Anna C. Doris, Brandon Man, Giorgio Giannone, Md Ferdous Alam, Faez Ahmed
{"title":"From concept to manufacturing: evaluating vision-language models for engineering design","authors":"Cyril Picard, Kristen M. Edwards, Anna C. Doris, Brandon Man, Giorgio Giannone, Md Ferdous Alam, Faez Ahmed","doi":"10.1007/s10462-025-11290-y","DOIUrl":null,"url":null,"abstract":"<div><p>Engineering design is undergoing a transformative shift with the advent of AI, marking a new era in how we approach product, system, and service planning. Large language models have demonstrated impressive capabilities in enabling this shift. Yet, with text as their only input modality, they cannot leverage the large body of visual artifacts that engineers have used for centuries and are accustomed to. This gap is addressed with the release of multimodal vision-language models (VLMs), such as GPT-4V, enabling AI to impact many more types of tasks. Our work presents a comprehensive evaluation of VLMs across a spectrum of engineering design tasks, categorized into four main areas: Conceptual Design, System-Level and Detailed Design, Manufacturing and Inspection, and Engineering Education Tasks. Specifically in this paper, we assess the capabilities of two VLMs, GPT-4V and LLaVA 1.6 34B, in design tasks such as sketch similarity analysis, CAD generation, topology optimization, manufacturability assessment, and engineering textbook problems. Through this structured evaluation, we not only explore VLMs’ proficiency in handling complex design challenges but also identify their limitations in complex engineering design applications. Our research establishes a foundation for future assessments of vision language models. It also contributes a set of benchmark testing datasets, with more than 1000 queries, for ongoing advancements and applications in this field.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 9","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11290-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11290-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Engineering design is undergoing a transformative shift with the advent of AI, marking a new era in how we approach product, system, and service planning. Large language models have demonstrated impressive capabilities in enabling this shift. Yet, with text as their only input modality, they cannot leverage the large body of visual artifacts that engineers have used for centuries and are accustomed to. This gap is addressed with the release of multimodal vision-language models (VLMs), such as GPT-4V, enabling AI to impact many more types of tasks. Our work presents a comprehensive evaluation of VLMs across a spectrum of engineering design tasks, categorized into four main areas: Conceptual Design, System-Level and Detailed Design, Manufacturing and Inspection, and Engineering Education Tasks. Specifically in this paper, we assess the capabilities of two VLMs, GPT-4V and LLaVA 1.6 34B, in design tasks such as sketch similarity analysis, CAD generation, topology optimization, manufacturability assessment, and engineering textbook problems. Through this structured evaluation, we not only explore VLMs’ proficiency in handling complex design challenges but also identify their limitations in complex engineering design applications. Our research establishes a foundation for future assessments of vision language models. It also contributes a set of benchmark testing datasets, with more than 1000 queries, for ongoing advancements and applications in this field.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.