Multi-view learning with graph convolution networks adopting diverse graphs and genuine deep feature fusion

IF 13.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Guowen Peng, Fadi Dornaika, Jinan Charafeddine
{"title":"Multi-view learning with graph convolution networks adopting diverse graphs and genuine deep feature fusion","authors":"Guowen Peng,&nbsp;Fadi Dornaika,&nbsp;Jinan Charafeddine","doi":"10.1007/s10462-025-11301-y","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-view data significantly enhances the accuracy of machine learning algorithms by providing a comprehensive representation of object features. Despite their potential, research on the use of Graph Convolutional Networks (GCNs) for processing node connectivity and data features remains limited. Existing methods mainly focus on weighted summation of graph matrices, with only a few approaches effectively integrating the feature information into the graph structures. To overcome these limitations, this paper proposes a novel deep learning architecture: the Feature Fusion and Multi-Graph Fusion Learning Framework (MGCN-FN). The framework consists of two core modules: Feature Fusion Network (FFN): Designed to extract and consolidate key features from multiple views. Multi-Graph Fusion Network (MGFN): Constructs multiple graphs for each view and jointly optimizes both the graph weights and the GCN model. Extensive experiments on various multi-view datasets show that MGCN-FN achieves superior performance compared to state-of-the-art methods, especially on semi-supervised multi-view classification tasks.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 9","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11301-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11301-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-view data significantly enhances the accuracy of machine learning algorithms by providing a comprehensive representation of object features. Despite their potential, research on the use of Graph Convolutional Networks (GCNs) for processing node connectivity and data features remains limited. Existing methods mainly focus on weighted summation of graph matrices, with only a few approaches effectively integrating the feature information into the graph structures. To overcome these limitations, this paper proposes a novel deep learning architecture: the Feature Fusion and Multi-Graph Fusion Learning Framework (MGCN-FN). The framework consists of two core modules: Feature Fusion Network (FFN): Designed to extract and consolidate key features from multiple views. Multi-Graph Fusion Network (MGFN): Constructs multiple graphs for each view and jointly optimizes both the graph weights and the GCN model. Extensive experiments on various multi-view datasets show that MGCN-FN achieves superior performance compared to state-of-the-art methods, especially on semi-supervised multi-view classification tasks.

采用多元图和真正深度特征融合的图卷积网络的多视图学习
通过提供对象特征的全面表示,多视图数据显着提高了机器学习算法的准确性。尽管具有潜力,但使用图卷积网络(GCNs)处理节点连接和数据特征的研究仍然有限。现有的方法主要集中在图矩阵的加权求和,只有少数方法能有效地将特征信息整合到图结构中。为了克服这些限制,本文提出了一种新的深度学习架构:特征融合和多图融合学习框架(MGCN-FN)。该框架由两个核心模块组成:特征融合网络(FFN):旨在从多个视图中提取和整合关键特征。MGFN (Multi-Graph Fusion Network):为每个视图构建多个图,共同优化图权和GCN模型。在各种多视图数据集上的大量实验表明,与最先进的方法相比,MGCN-FN取得了卓越的性能,特别是在半监督多视图分类任务上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信