Fully-Tunable Tunnel-Coupled Quantum Dots and Charge Sensing in a Commercial 22 nm FD-SOI Process

IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
C. Power;M. Moras;A. Sokolov;C. Rohrbacher;X. Wu;S. V. Amitonov;I. Kriekouki;A. Aprà;P. Giounanlis;M. Asker;M. Harkin;P. Hanos-Puskai;P. Bisiaux;I. Bashir;D. Redmond;D. Leipold;R. B. Staszewski;B. Barry;N. Samkharadze;E. Blokhina
{"title":"Fully-Tunable Tunnel-Coupled Quantum Dots and Charge Sensing in a Commercial 22 nm FD-SOI Process","authors":"C. Power;M. Moras;A. Sokolov;C. Rohrbacher;X. Wu;S. V. Amitonov;I. Kriekouki;A. Aprà;P. Giounanlis;M. Asker;M. Harkin;P. Hanos-Puskai;P. Bisiaux;I. Bashir;D. Redmond;D. Leipold;R. B. Staszewski;B. Barry;N. Samkharadze;E. Blokhina","doi":"10.1109/LED.2025.3595384","DOIUrl":null,"url":null,"abstract":"Confining electrons or holes in quantum dots formed in the channel of industry-standard fully depleted silicon-on-insulator CMOS structures is a promising approach to scalable qubit architectures. In this communication, we present measurement results of a commercial nanostructure fabricated using the GlobalFoundries 22FDXTM industrial process. These quantum dots are formed in the device channel between polysilicon gates. We report precise control over inter-dot coupling, bias triangle formation, and single electron box sensing in a commercial process for the first time.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 10","pages":"1913-1916"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11107337","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11107337/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Confining electrons or holes in quantum dots formed in the channel of industry-standard fully depleted silicon-on-insulator CMOS structures is a promising approach to scalable qubit architectures. In this communication, we present measurement results of a commercial nanostructure fabricated using the GlobalFoundries 22FDXTM industrial process. These quantum dots are formed in the device channel between polysilicon gates. We report precise control over inter-dot coupling, bias triangle formation, and single electron box sensing in a commercial process for the first time.
全可调谐隧道耦合量子点与22nm商用FD-SOI制程中的电荷传感
在工业标准的完全耗尽绝缘体上硅CMOS结构通道中形成的量子点中限制电子或空穴是一种有前途的可扩展量子比特架构方法。在本文中,我们展示了使用GlobalFoundries 22FDXTM工业工艺制造的商用纳米结构的测量结果。这些量子点在多晶硅栅极之间的器件通道中形成。我们首次报道了在商业过程中对点间耦合、偏置三角形形成和单电子盒传感的精确控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信