C. Power;M. Moras;A. Sokolov;C. Rohrbacher;X. Wu;S. V. Amitonov;I. Kriekouki;A. Aprà;P. Giounanlis;M. Asker;M. Harkin;P. Hanos-Puskai;P. Bisiaux;I. Bashir;D. Redmond;D. Leipold;R. B. Staszewski;B. Barry;N. Samkharadze;E. Blokhina
{"title":"Fully-Tunable Tunnel-Coupled Quantum Dots and Charge Sensing in a Commercial 22 nm FD-SOI Process","authors":"C. Power;M. Moras;A. Sokolov;C. Rohrbacher;X. Wu;S. V. Amitonov;I. Kriekouki;A. Aprà;P. Giounanlis;M. Asker;M. Harkin;P. Hanos-Puskai;P. Bisiaux;I. Bashir;D. Redmond;D. Leipold;R. B. Staszewski;B. Barry;N. Samkharadze;E. Blokhina","doi":"10.1109/LED.2025.3595384","DOIUrl":null,"url":null,"abstract":"Confining electrons or holes in quantum dots formed in the channel of industry-standard fully depleted silicon-on-insulator CMOS structures is a promising approach to scalable qubit architectures. In this communication, we present measurement results of a commercial nanostructure fabricated using the GlobalFoundries 22FDXTM industrial process. These quantum dots are formed in the device channel between polysilicon gates. We report precise control over inter-dot coupling, bias triangle formation, and single electron box sensing in a commercial process for the first time.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 10","pages":"1913-1916"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11107337","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11107337/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Confining electrons or holes in quantum dots formed in the channel of industry-standard fully depleted silicon-on-insulator CMOS structures is a promising approach to scalable qubit architectures. In this communication, we present measurement results of a commercial nanostructure fabricated using the GlobalFoundries 22FDXTM industrial process. These quantum dots are formed in the device channel between polysilicon gates. We report precise control over inter-dot coupling, bias triangle formation, and single electron box sensing in a commercial process for the first time.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.