{"title":"Fosaprepitant Dimeglumine Alleviates Dengue Virus Infection and Virus-Induced Inflammatory Responses.","authors":"Xueyi Deng, Ningze Zheng, Shurui Liu, Wenying Cao, Yi-Ping Li, Guigen Zhang","doi":"10.1021/acsinfecdis.5c00490","DOIUrl":null,"url":null,"abstract":"<p><p>Dengue remains one of the most important mosquito-borne diseases. Currently, in the absence of targeted antiviral therapy, the treatment of dengue remains supportive. In this study, we found that the neurokinin-1 receptor antagonist fosaprepitant dimeglumine, an FDA-approved drug for the prevention of nausea and vomiting, efficiently inhibited dengue virus (DENV) infection <i>in vitro</i>. Fosaprepitant dimeglumine dose-dependently inhibited DENV replication in several cell lines, including A549 cells and THP-1-derived macrophages, with IC<sub>50</sub> values of 3.26 and 4.20 μM, respectively. The time-of-drug-addition and time-of-drug-elimination assays revealed that fosaprepitant dimeglumine acted at late stages after virus entry. Fosaprepitant dimeglumine efficiently inhibited DENV genome replication in a stable reporter DENV-3 replicon cell line. The immune-mediated cytokine storm is known to play a key role in the severe manifestation of dengue. The interferon γ-inducible protein 10 (IP-10) and IL-6 are upregulated in severe dengue. For the first time, we report that fosaprepitant dimeglumine significantly suppressed the levels of the proinflammatory cytokines IL-6 and IP-10 in differentiated THP-1 macrophages infected with DENV-2. Fosaprepitant dimeglumine not only effectively inhibits DENV replication but also attenuates virus-induced inflammatory responses, which makes it a promising candidate for drug repurposing in the treatment of severe dengue.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.5c00490","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Dengue remains one of the most important mosquito-borne diseases. Currently, in the absence of targeted antiviral therapy, the treatment of dengue remains supportive. In this study, we found that the neurokinin-1 receptor antagonist fosaprepitant dimeglumine, an FDA-approved drug for the prevention of nausea and vomiting, efficiently inhibited dengue virus (DENV) infection in vitro. Fosaprepitant dimeglumine dose-dependently inhibited DENV replication in several cell lines, including A549 cells and THP-1-derived macrophages, with IC50 values of 3.26 and 4.20 μM, respectively. The time-of-drug-addition and time-of-drug-elimination assays revealed that fosaprepitant dimeglumine acted at late stages after virus entry. Fosaprepitant dimeglumine efficiently inhibited DENV genome replication in a stable reporter DENV-3 replicon cell line. The immune-mediated cytokine storm is known to play a key role in the severe manifestation of dengue. The interferon γ-inducible protein 10 (IP-10) and IL-6 are upregulated in severe dengue. For the first time, we report that fosaprepitant dimeglumine significantly suppressed the levels of the proinflammatory cytokines IL-6 and IP-10 in differentiated THP-1 macrophages infected with DENV-2. Fosaprepitant dimeglumine not only effectively inhibits DENV replication but also attenuates virus-induced inflammatory responses, which makes it a promising candidate for drug repurposing in the treatment of severe dengue.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.