Megabase-scale human genome rearrangement with programmable bridge recombinases

IF 45.8 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Pub Date : 2025-09-25 DOI:10.1126/science.adz0276
Nicholas T. Perry, Liam J. Bartie, Dhruva Katrekar, Gabriel A. Gonzalez, Matthew G. Durrant, James J. Pai, Alison Fanton, Juliana Q. Martins, Masahiro Hiraizumi, Chiara Ricci-Tam, Hiroshi Nishimasu, Silvana Konermann, Patrick D. Hsu
{"title":"Megabase-scale human genome rearrangement with programmable bridge recombinases","authors":"Nicholas T. Perry, Liam J. Bartie, Dhruva Katrekar, Gabriel A. Gonzalez, Matthew G. Durrant, James J. Pai, Alison Fanton, Juliana Q. Martins, Masahiro Hiraizumi, Chiara Ricci-Tam, Hiroshi Nishimasu, Silvana Konermann, Patrick D. Hsu","doi":"10.1126/science.adz0276","DOIUrl":null,"url":null,"abstract":"Bridge recombinases are naturally occurring RNA-guided DNA recombinases that we previously demonstrated can programmably insert, excise, and invert DNA in vitro and in <jats:italic toggle=\"yes\">Escherichia coli</jats:italic> . In this study, we report the discovery and engineering of the bridge recombinase ortholog ISCro4 for universal rearrangements of the human genome. We defined strategies for the optimal application of bridge systems, leveraging mechanistic insights to improve their targeting specificity. Through rational engineering of the ISCro4 bridge RNA and deep mutational scanning of its recombinase, we achieved up to 20% insertion efficiency into the human genome and genome-wide specificity as high as 82%. We further demonstrated intrachromosomal inversion and excision, mobilizing up to 0.93 megabases of DNA. Lastly, we provided proof-of-concept for plasmid-based excision of disease-relevant gene regulatory regions or repeat expansions.","PeriodicalId":21678,"journal":{"name":"Science","volume":"18 1","pages":""},"PeriodicalIF":45.8000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/science.adz0276","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bridge recombinases are naturally occurring RNA-guided DNA recombinases that we previously demonstrated can programmably insert, excise, and invert DNA in vitro and in Escherichia coli . In this study, we report the discovery and engineering of the bridge recombinase ortholog ISCro4 for universal rearrangements of the human genome. We defined strategies for the optimal application of bridge systems, leveraging mechanistic insights to improve their targeting specificity. Through rational engineering of the ISCro4 bridge RNA and deep mutational scanning of its recombinase, we achieved up to 20% insertion efficiency into the human genome and genome-wide specificity as high as 82%. We further demonstrated intrachromosomal inversion and excision, mobilizing up to 0.93 megabases of DNA. Lastly, we provided proof-of-concept for plasmid-based excision of disease-relevant gene regulatory regions or repeat expansions.
用可编程桥式重组酶进行百万级人类基因组重排
桥接重组酶是天然存在的rna引导的DNA重组酶,我们之前已经证明它可以在体外和大肠杆菌中可编程地插入、切除和转化DNA。在这项研究中,我们报道了桥梁重组酶同源物ISCro4的发现和工程,用于人类基因组的普遍重排。我们定义了桥梁系统的最佳应用策略,利用机制的见解来提高其靶向特异性。通过对ISCro4桥接RNA进行合理的工程设计,并对其重组酶进行深度突变扫描,我们实现了高达20%的插入效率和高达82%的全基因组特异性。我们进一步展示了染色体内反转和切除,动员高达0.93兆碱基的DNA。最后,我们提供了基于质粒的疾病相关基因调控区域切除或重复扩增的概念证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信