Hierarchical ZnMn2O4 microspheres for selective ethylene glycol sensing: synthesis optimization via machine learning

IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mohammadmahdi Abedi , Zivar Azmoodeh , Abbas Bagheri Khatibani , Seyedeh Faezeh Hashemi Karouei
{"title":"Hierarchical ZnMn2O4 microspheres for selective ethylene glycol sensing: synthesis optimization via machine learning","authors":"Mohammadmahdi Abedi ,&nbsp;Zivar Azmoodeh ,&nbsp;Abbas Bagheri Khatibani ,&nbsp;Seyedeh Faezeh Hashemi Karouei","doi":"10.1016/j.mtphys.2025.101874","DOIUrl":null,"url":null,"abstract":"<div><div>This study not only demonstrates the potential of engineered hierarchical ZnMn<sub>2</sub>O<sub>4</sub> (ZM) nanostructures as high-performance toxic volatile organic compounds (VOCs) sensors, but also proposes a machine-learning framework to predict and optimize the specific surface area (SSA)—a key factor in solid–gas sensing performance—for metal-oxide semiconductors by varying pivotal synthesis parameters, including hydrothermal temperature, calcination temperature, and solution pH (adjusted via acid, base, or surfactant additives). A full factorial design yielded 180 distinct synthesis combinations, which were used to train Random Forest, Gradient Boosting, and XGBoost regression models. XGBoost outperformed other models (R<sup>2</sup> = 0.92, RMSE = 2.68 m<sup>2</sup>/g, RRMSE = 8 %, and MAE = 1.95 m<sup>2</sup>/g) and was employed to predict the optimal synthesis conditions. Specifically, the model predicted a maximum SSA of 78.65 m<sup>2</sup> g<sup>−1</sup> at a hydrothermal temperature of 167.14 °C, a calcination temperature of 440.82 °C, and pH = 9.14; an experimental SSA of ∼74 m<sup>2</sup> g<sup>−1</sup> was obtained under these settings (≈8 % deviation). Experimental validation using two new samples with modified pH confirmed prediction errors below 9 %. The optimized ZM3 sample exhibited a crystallite size of ∼18 nm, increased lattice strain, and hierarchical nanoplatelet morphology. Gas sensing tests revealed that ZM3 showed the highest response (3.69–500 ppm ethylene glycol) at 185 °C, together with rapid response/recovery times of 12 s and 14 s, and excellent selectivity over other VOCs. This study presents a reproducible and data-driven methodology for synthesis optimization and microstructural control in spinel oxides. The full Python scripts and supplementary characterization results are provided in Appendix A to ensure transparency and facilitate reproducibility.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"58 ","pages":"Article 101874"},"PeriodicalIF":9.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325002305","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study not only demonstrates the potential of engineered hierarchical ZnMn2O4 (ZM) nanostructures as high-performance toxic volatile organic compounds (VOCs) sensors, but also proposes a machine-learning framework to predict and optimize the specific surface area (SSA)—a key factor in solid–gas sensing performance—for metal-oxide semiconductors by varying pivotal synthesis parameters, including hydrothermal temperature, calcination temperature, and solution pH (adjusted via acid, base, or surfactant additives). A full factorial design yielded 180 distinct synthesis combinations, which were used to train Random Forest, Gradient Boosting, and XGBoost regression models. XGBoost outperformed other models (R2 = 0.92, RMSE = 2.68 m2/g, RRMSE = 8 %, and MAE = 1.95 m2/g) and was employed to predict the optimal synthesis conditions. Specifically, the model predicted a maximum SSA of 78.65 m2 g−1 at a hydrothermal temperature of 167.14 °C, a calcination temperature of 440.82 °C, and pH = 9.14; an experimental SSA of ∼74 m2 g−1 was obtained under these settings (≈8 % deviation). Experimental validation using two new samples with modified pH confirmed prediction errors below 9 %. The optimized ZM3 sample exhibited a crystallite size of ∼18 nm, increased lattice strain, and hierarchical nanoplatelet morphology. Gas sensing tests revealed that ZM3 showed the highest response (3.69–500 ppm ethylene glycol) at 185 °C, together with rapid response/recovery times of 12 s and 14 s, and excellent selectivity over other VOCs. This study presents a reproducible and data-driven methodology for synthesis optimization and microstructural control in spinel oxides. The full Python scripts and supplementary characterization results are provided in Appendix A to ensure transparency and facilitate reproducibility.
选择性乙二醇传感的分级ZnMn2O4微球:基于机器学习的合成优化
本研究不仅展示了工程分层ZnMn2O4 (ZM)纳米结构作为高性能有毒挥发性有机化合物(VOCs)传感器的潜力,而且还提出了一种机器学习框架,通过改变关键合成参数,包括水热温度、煅烧温度和溶液pH(通过酸、碱、盐和盐调节),来预测和优化金属氧化物半导体的比表面积(SSA)——固气传感性能的关键因素。或表面活性剂添加剂)。全因子设计产生180种不同的合成组合,用于训练随机森林、梯度增强和XGBoost回归模型。XGBoost模型优于其他模型(R2 = 0.92, RMSE = 2.68 m2/g, RRMSE = 8%, MAE = 1.95 m2/g),可用于预测最佳合成条件。其中,在水热温度为167.14℃,煅烧温度为440.82℃,pH = 9.14时,最大SSA为78.65 m2 g-1;在这些设置下获得的实验SSA为~ 74 m2 g-1(偏差≈8%)。使用两个修改pH值的新样品进行实验验证,证实预测误差低于9%。优化后的ZM3样品的晶粒尺寸为~ 18 nm,晶格应变增加,纳米板形貌分层。气敏测试表明,ZM3在185°C时的响应最高(3.69至500 ppm乙二醇),响应/恢复时间为12 s和14 s,并且对其他voc具有出色的选择性。本研究提出了一种可重复的、数据驱动的尖晶石氧化物合成优化和微观结构控制方法。完整的Python脚本和补充的表征结果在附录A中提供,以确保透明度和便于再现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信