HMAMRL: Multicriterion Flexible Coordinated Control for Coal-Fired Power Generation Systems under Wide Load Operation.

IF 10.5 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Xiaomin Liu,Mengjun Yu,Chunyu Yang,Haoyu Wang,Linna Zhou,Huaichun Zhou
{"title":"HMAMRL: Multicriterion Flexible Coordinated Control for Coal-Fired Power Generation Systems under Wide Load Operation.","authors":"Xiaomin Liu,Mengjun Yu,Chunyu Yang,Haoyu Wang,Linna Zhou,Huaichun Zhou","doi":"10.1109/tcyb.2025.3610512","DOIUrl":null,"url":null,"abstract":"Flexible and efficient wide-load tracking in coal-fired power generation systems (CPGSs) is crucial for integrating renewable energy. To address the challenges arising from the dynamic characteristics and task distribution differences during the wide-load operation of thermal power units, this article proposes a novel hierarchical model-agnostic meta reinforcement learning (HMAMRL) framework. This framework combines inner meta-learning for quick adaptation within task categories and outer meta-learning for sharing general task knowledge, ensuring robust generalization under different load conditions. Meanwhile, an adaptive multicriterion reward function design method is proposed to dynamically balance load tracking costs, coal consumption costs, and input fluctuation costs. Moreover, a truncated proximal policy optimization (TPPO) algorithm ensures precise load control within physical constraints. Experimental results on the 160 and 1000 MW CPGSs demonstrate the effectiveness and superiority of the proposed algorithm.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"16 1","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tcyb.2025.3610512","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible and efficient wide-load tracking in coal-fired power generation systems (CPGSs) is crucial for integrating renewable energy. To address the challenges arising from the dynamic characteristics and task distribution differences during the wide-load operation of thermal power units, this article proposes a novel hierarchical model-agnostic meta reinforcement learning (HMAMRL) framework. This framework combines inner meta-learning for quick adaptation within task categories and outer meta-learning for sharing general task knowledge, ensuring robust generalization under different load conditions. Meanwhile, an adaptive multicriterion reward function design method is proposed to dynamically balance load tracking costs, coal consumption costs, and input fluctuation costs. Moreover, a truncated proximal policy optimization (TPPO) algorithm ensures precise load control within physical constraints. Experimental results on the 160 and 1000 MW CPGSs demonstrate the effectiveness and superiority of the proposed algorithm.
大负荷运行下燃煤发电系统多准则柔性协调控制。
灵活高效的燃煤发电系统大负荷跟踪是实现可再生能源并网的关键。针对火电机组大负荷运行过程中动态特性和任务分配差异带来的挑战,提出了一种新的分层模型不可知元强化学习(HMAMRL)框架。该框架将内部元学习与外部元学习相结合,以实现任务类别内的快速适应和共享一般任务知识,确保在不同负载条件下的鲁棒泛化。同时,提出了一种自适应多准则奖励函数设计方法,以动态平衡负荷跟踪成本、煤耗成本和输入波动成本。此外,截断近端策略优化(TPPO)算法确保了在物理约束下的精确负载控制。在160和1000 MW cpgs上的实验结果证明了该算法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信