C. Medina-Bailon, J.L. Padilla, L. Donetti, C. Navarro, C. Sampedro, F. Gamiz
{"title":"Geometrical variability impact on the gate tunneling leakage mechanisms in FinFETs","authors":"C. Medina-Bailon, J.L. Padilla, L. Donetti, C. Navarro, C. Sampedro, F. Gamiz","doi":"10.1016/j.sse.2025.109212","DOIUrl":null,"url":null,"abstract":"<div><div>Given the critical role that quantum tunneling effects play in the behavior of nanoelectronic devices, it is essential to investigate the influence and restraints of these phenomena on the overall transistor performance. In this work, a previously developed gate leakage model, incorporated into an in-house 2D Multi-Subband Ensemble Monte Carlo simulation framework, is employed to analyze the leakage current flowing across the gate insulator. The primary objective is to evaluate how variations in key geometrical parameters (specifically, gate oxide and semiconductor thicknesses dimensions) affect the magnitude and bias dependence of tunneling-induced leakage. Simulations are performed on a representative FinFET structure, and the results reveal that tunneling effects become increasingly pronounced at low gate voltages in devices with thinner oxides and thicker semiconductor thickness. These findings underscore the relevance of incorporating quantum tunneling mechanisms in predictive modeling of advanced transistor architectures.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"230 ","pages":"Article 109212"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125001571","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Given the critical role that quantum tunneling effects play in the behavior of nanoelectronic devices, it is essential to investigate the influence and restraints of these phenomena on the overall transistor performance. In this work, a previously developed gate leakage model, incorporated into an in-house 2D Multi-Subband Ensemble Monte Carlo simulation framework, is employed to analyze the leakage current flowing across the gate insulator. The primary objective is to evaluate how variations in key geometrical parameters (specifically, gate oxide and semiconductor thicknesses dimensions) affect the magnitude and bias dependence of tunneling-induced leakage. Simulations are performed on a representative FinFET structure, and the results reveal that tunneling effects become increasingly pronounced at low gate voltages in devices with thinner oxides and thicker semiconductor thickness. These findings underscore the relevance of incorporating quantum tunneling mechanisms in predictive modeling of advanced transistor architectures.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.