On the factorability of infinite graphs

IF 1.1 3区 数学 Q1 MATHEMATICS
Babak Miraftab , Heydar Radjavi , Sho Suda
{"title":"On the factorability of infinite graphs","authors":"Babak Miraftab ,&nbsp;Heydar Radjavi ,&nbsp;Sho Suda","doi":"10.1016/j.laa.2025.09.011","DOIUrl":null,"url":null,"abstract":"<div><div>A graph <em>G</em> is said to be <em>factorized</em> into graphs <em>H</em> and <em>K</em> via a matrix product if there exist adjacency matrices <em>A</em>, <em>B</em>, and <em>C</em> for <em>G</em>, <em>H</em>, and <em>K</em>, respectively, such that <span><math><mi>A</mi><mo>=</mo><mi>B</mi><mi>C</mi></math></span>. Recently, Maghsoudi et al. proved that the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> admits a factorization if and only if <span><math><mi>n</mi><mo>=</mo><mn>4</mn><mi>k</mi><mo>+</mo><mn>1</mn></math></span>. In this note, we show that, in contrast to the finite case, the (countably) infinite complete graph admits a factorization via a matrix product. In addition, they showed that the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> has a factorization if and only if both <em>m</em> and <em>n</em> are even. We extend this result to the infinite complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>, namely: the infinite complete bipartite graph admits a factorization if and only if the size of the finite part (if it exists) is even. Finally, we show that the <em>n</em>-dimensional grid admits a factorization for all <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 409-418"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525003842","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A graph G is said to be factorized into graphs H and K via a matrix product if there exist adjacency matrices A, B, and C for G, H, and K, respectively, such that A=BC. Recently, Maghsoudi et al. proved that the complete graph Kn admits a factorization if and only if n=4k+1. In this note, we show that, in contrast to the finite case, the (countably) infinite complete graph admits a factorization via a matrix product. In addition, they showed that the complete bipartite graph Km,n has a factorization if and only if both m and n are even. We extend this result to the infinite complete bipartite graph Km,n, namely: the infinite complete bipartite graph admits a factorization if and only if the size of the finite part (if it exists) is even. Finally, we show that the n-dimensional grid admits a factorization for all n2.
关于无穷图的可因式性
如果G、H和K分别存在邻接矩阵A、B和C,则图G通过矩阵积被分解为图H和图K,使得A=BC。最近,Maghsoudi等人证明了完全图Kn当且仅当n=4k+1可被分解。在本文中,我们证明,与有限情况相反,(可数)无限完全图允许通过矩阵积进行因式分解。此外,他们还证明了完全二部图Km,n当且仅当m和n都是偶数时具有因数分解性。我们将此结果推广到无限完全二部图Km,n上,即:无限完全二部图允许被分解当且仅当有限部分(如果存在)的大小为偶。最后,我们证明了n维网格允许所有n≥2的分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信