High-performance WZr-SiZrO cermet-based solar selective coatings: Enhanced thermal stability and oxidation resistance

IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hui Xiong , Deng Yang , Ruochen Xin , Wenjing Ding , Junhua Gao , Hongtao Cao
{"title":"High-performance WZr-SiZrO cermet-based solar selective coatings: Enhanced thermal stability and oxidation resistance","authors":"Hui Xiong ,&nbsp;Deng Yang ,&nbsp;Ruochen Xin ,&nbsp;Wenjing Ding ,&nbsp;Junhua Gao ,&nbsp;Hongtao Cao","doi":"10.1016/j.mtphys.2025.101872","DOIUrl":null,"url":null,"abstract":"<div><div>Cermet-based solar selective absorbing coatings (SSACs) are critical for solar photothermal energy conversion, as their optical properties and thermal stability directly govern the efficiency and lifetime of power generation systems. However, under extreme conditions such as high temperatures (&gt;550 °C) and oxidative or low-vacuum environments, conventional cermet-based SSACs face two key challenges: on the one hand, inward oxygen diffusion alters the coating's composition and microstructure; and on the other, metal nanoparticles within the cermet layer aggregate and coarsen, degrading the optical performance. To overcome these limitations, this study employs SiZrO as an advanced anti-reflective and oxygen-diffusion barrier layer, as well as a synergistic approach combining modified amorphous ceramic networks and microalloying to enhance cermet thermal stability. The resulting WZr-SiZrO-based SSACs demonstrate outstanding optical performance (α = 96.1 %, ε = 15.5 %@500 °C) even after annealing at 650 °C for 1050 h under 0.2 Pa. Additionally, accelerated aging tests indicate that the coating's service lifetime can exceed 25 years at 620 °C/0.2 Pa. With its high efficiency, exceptional durability, and scalable fabrication, this coating is a promising candidate used in the next-generation concentrated solar power (CSP) technologies.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"58 ","pages":"Article 101872"},"PeriodicalIF":9.7000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325002287","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cermet-based solar selective absorbing coatings (SSACs) are critical for solar photothermal energy conversion, as their optical properties and thermal stability directly govern the efficiency and lifetime of power generation systems. However, under extreme conditions such as high temperatures (>550 °C) and oxidative or low-vacuum environments, conventional cermet-based SSACs face two key challenges: on the one hand, inward oxygen diffusion alters the coating's composition and microstructure; and on the other, metal nanoparticles within the cermet layer aggregate and coarsen, degrading the optical performance. To overcome these limitations, this study employs SiZrO as an advanced anti-reflective and oxygen-diffusion barrier layer, as well as a synergistic approach combining modified amorphous ceramic networks and microalloying to enhance cermet thermal stability. The resulting WZr-SiZrO-based SSACs demonstrate outstanding optical performance (α = 96.1 %, ε = 15.5 %@500 °C) even after annealing at 650 °C for 1050 h under 0.2 Pa. Additionally, accelerated aging tests indicate that the coating's service lifetime can exceed 25 years at 620 °C/0.2 Pa. With its high efficiency, exceptional durability, and scalable fabrication, this coating is a promising candidate used in the next-generation concentrated solar power (CSP) technologies.
高性能WZr-SiZrO陶瓷基太阳能选择性涂层:增强热稳定性和抗氧化性
陶瓷基太阳能选择性吸收涂层(SSACs)是太阳能光热转换的关键材料,其光学性能和热稳定性直接决定了发电系统的效率和寿命。然而,在高温(>550℃)和氧化或低真空环境等极端条件下,传统的陶瓷基ssac面临两个关键挑战:一方面,向内的氧气扩散改变了涂层的成分和微观结构;另一方面,金属陶瓷层中的金属纳米颗粒聚集并变粗,降低了光学性能。为了克服这些限制,本研究采用sisiro作为先进的抗反射和氧扩散阻挡层,并将改性非晶陶瓷网络和微合金化相结合的协同方法来提高金属陶瓷的热稳定性。所得的wzr - sizro基SSACs在650℃、0.2 Pa、1050小时退火后,仍表现出优异的光学性能(α=96.1%, ε=15.5%@500°C)。此外,加速老化试验表明,在620°C/0.2 Pa下,涂层的使用寿命可超过25年。该涂层具有高效率、优异的耐用性和可扩展的制造工艺,是下一代聚光太阳能(CSP)技术中很有前途的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信