Panhasith Ung, Ankita Paul, Soumyakanta Maji, Pilar Saavedra-Weis, Karen D Moulton, Suvarn S Kulkarni, Danielle H Dube
{"title":"Assessing <i>O</i>-Naphthylmethyl and <i>O</i>-Anthracenemethyl Glycosides as Metabolic Inhibitors of Bacterial Glycan Biosynthesis.","authors":"Panhasith Ung, Ankita Paul, Soumyakanta Maji, Pilar Saavedra-Weis, Karen D Moulton, Suvarn S Kulkarni, Danielle H Dube","doi":"10.1021/acsinfecdis.5c00559","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial glycans play a crucial role in survival and pathogenesis, making them attractive antibiotic targets. Unlike mammalian glycans, bacterial glycans incorporate rare sugars such as bacillosamine, <i>N</i>-acetylfucosamine, and 2,4-diacetamido-2,4,6-trideoxy galactose. To probe the role of bacterial glycans, we previously developed <i>O</i>-benzyl glycosides that metabolically inhibit <i>Helicobacter pylori</i> glycan biosynthesis and impair bacterial fitness. Here, we probed the efficacy of <i>O</i>-naphthylmethyl and <i>O</i>-anthracenemethyl glycosides, which bear larger aglycones relative to previously reported bacterial metabolic inhibitors. <i>O</i>-Naphthylmethyl d-<i>N</i>-acetylfucosamine inhibited <i>H. pylori</i> glycan biosynthesis, reduced biofilm formation, and impeded <i>H. pylori</i> growth at lower concentrations than its <i>O</i>-benzyl analog while leaving glycosylation of the commensal bacterium <i>Bacteroides fragilis</i> intact. By contrast, the <i>O</i>-anthracenemethyl glycosides tested were not effective metabolic glycan inhibitors. These metabolic inhibitors expand the bacterial glycoscience toolkit for probing protein glycosylation, help refine metabolic glycan inhibitor design parameters, and have the potential to set the stage for a glycan-based strategy to selectively target pathogens.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.5c00559","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial glycans play a crucial role in survival and pathogenesis, making them attractive antibiotic targets. Unlike mammalian glycans, bacterial glycans incorporate rare sugars such as bacillosamine, N-acetylfucosamine, and 2,4-diacetamido-2,4,6-trideoxy galactose. To probe the role of bacterial glycans, we previously developed O-benzyl glycosides that metabolically inhibit Helicobacter pylori glycan biosynthesis and impair bacterial fitness. Here, we probed the efficacy of O-naphthylmethyl and O-anthracenemethyl glycosides, which bear larger aglycones relative to previously reported bacterial metabolic inhibitors. O-Naphthylmethyl d-N-acetylfucosamine inhibited H. pylori glycan biosynthesis, reduced biofilm formation, and impeded H. pylori growth at lower concentrations than its O-benzyl analog while leaving glycosylation of the commensal bacterium Bacteroides fragilis intact. By contrast, the O-anthracenemethyl glycosides tested were not effective metabolic glycan inhibitors. These metabolic inhibitors expand the bacterial glycoscience toolkit for probing protein glycosylation, help refine metabolic glycan inhibitor design parameters, and have the potential to set the stage for a glycan-based strategy to selectively target pathogens.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.