Generative Adversarial Network based Single Image Super Resolution using Deep Residual-in-Residual Dense Network

IF 3.1 3区 物理与天体物理 Q2 Engineering
Optik Pub Date : 2025-09-19 DOI:10.1016/j.ijleo.2025.172538
Khushboo Singla, Rajoo Pandey, Umesh Ghanekar
{"title":"Generative Adversarial Network based Single Image Super Resolution using Deep Residual-in-Residual Dense Network","authors":"Khushboo Singla,&nbsp;Rajoo Pandey,&nbsp;Umesh Ghanekar","doi":"10.1016/j.ijleo.2025.172538","DOIUrl":null,"url":null,"abstract":"<div><div>The paper presents a Deep Residual-in-Residual Dense Network that introduces three principal refinements to further improve Single Image Super Resolution. The first refinement involves optimizing the Residual-in-Residual Dense Block to enhance hierarchical feature extraction in high-resolution images. The second advancement replaces the gradient operator with a learned edge extractor for better preservation of high-frequency details. The third improvement incorporates a suitable mid-level insight as a prior from a single layer to multiple layers of the network, ensuring the retention of vital structural intricacies in the output images. Collectively, these changes have enhanced the ability of the network for intricate detail extraction and preservation. Extensive simulations exhibit the efficacy of the presented network in terms of PSNR, SSIM, and LPIPS when compared with other state-of-the-art models.</div></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"339 ","pages":"Article 172538"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402625003262","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents a Deep Residual-in-Residual Dense Network that introduces three principal refinements to further improve Single Image Super Resolution. The first refinement involves optimizing the Residual-in-Residual Dense Block to enhance hierarchical feature extraction in high-resolution images. The second advancement replaces the gradient operator with a learned edge extractor for better preservation of high-frequency details. The third improvement incorporates a suitable mid-level insight as a prior from a single layer to multiple layers of the network, ensuring the retention of vital structural intricacies in the output images. Collectively, these changes have enhanced the ability of the network for intricate detail extraction and preservation. Extensive simulations exhibit the efficacy of the presented network in terms of PSNR, SSIM, and LPIPS when compared with other state-of-the-art models.
基于深度残差密集网络的生成对抗网络单幅图像超分辨率
本文提出了一种深度残差密集网络,该网络引入了三种主要的改进方法来进一步提高单幅图像的超分辨率。第一个改进涉及优化残差密集块,以增强高分辨率图像的分层特征提取。第二种进步是用学习的边缘提取器取代梯度算子,以更好地保留高频细节。第三个改进结合了一个合适的中级洞察力,作为从单层到多层网络的先验,确保在输出图像中保留重要的结构复杂性。总的来说,这些变化增强了网络提取和保存复杂细节的能力。与其他最先进的模型相比,广泛的仿真显示了所提出的网络在PSNR、SSIM和LPIPS方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optik
Optik 物理-光学
CiteScore
6.90
自引率
12.90%
发文量
1471
审稿时长
46 days
期刊介绍: Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields: Optics: -Optics design, geometrical and beam optics, wave optics- Optical and micro-optical components, diffractive optics, devices and systems- Photoelectric and optoelectronic devices- Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials- Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis- Optical testing and measuring techniques- Optical communication and computing- Physiological optics- As well as other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信