Achievement of high mobility and high stability DG IGZO TFTs with low thermal budget

IF 4.6 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhaoxing Fu , Yiting Cheng , Junyan Ren , Yuting Xiong , Hongfei Wu , Zhipeng Chen , Wangying Xu , Lingyan Liang , Hongtao Cao
{"title":"Achievement of high mobility and high stability DG IGZO TFTs with low thermal budget","authors":"Zhaoxing Fu ,&nbsp;Yiting Cheng ,&nbsp;Junyan Ren ,&nbsp;Yuting Xiong ,&nbsp;Hongfei Wu ,&nbsp;Zhipeng Chen ,&nbsp;Wangying Xu ,&nbsp;Lingyan Liang ,&nbsp;Hongtao Cao","doi":"10.1016/j.mssp.2025.110066","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving high mobility, robust stability, and low thermal budget simultaneously in oxide thin-film transistors (TFTs) remains a key challenge for next-generation displays and flexible electronics. We propose an optimized strategy for amorphous In–Ga–Zn–O (a-IGZO) TFTs by combining oxygen plasma pretreatment with a dual-gate architecture, enabling a synergistic enhancement in all three key performance metrics. A 1 min oxygen plasma treatment prior to atomic layer deposition of Al<sub>2</sub>O<sub>3</sub> top dielectric promotes favorable trimethylaluminum adsorption and suppresses lattice damage, resulting in a high field-effect mobility of 30.99 cm<sup>2</sup>/V·s and robust ambient stability. The dual-gate structure further increases device mobility to 44.99 cm<sup>2</sup>/V·s and improves bias stress stability (ΔV<sub>TH-PBTS/NBTS</sub> = +0.08 V/−0.05 V). Notably, the entire fabrication process is carried out at a maximum temperature of only 150 °C, demonstrating a low thermal budget. Furthermore, TCAD simulations are performed to verify that the dual-gate architecture facilitates bulk conduction across the channel, effectively suppressing interface trapping and enhancing bias-temperature-stress stability. This study offers a practical strategy for optimizing TFT performance parameters, with promising applications in high-performance, low-temperature, and flexible electronics.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"201 ","pages":"Article 110066"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125008030","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving high mobility, robust stability, and low thermal budget simultaneously in oxide thin-film transistors (TFTs) remains a key challenge for next-generation displays and flexible electronics. We propose an optimized strategy for amorphous In–Ga–Zn–O (a-IGZO) TFTs by combining oxygen plasma pretreatment with a dual-gate architecture, enabling a synergistic enhancement in all three key performance metrics. A 1 min oxygen plasma treatment prior to atomic layer deposition of Al2O3 top dielectric promotes favorable trimethylaluminum adsorption and suppresses lattice damage, resulting in a high field-effect mobility of 30.99 cm2/V·s and robust ambient stability. The dual-gate structure further increases device mobility to 44.99 cm2/V·s and improves bias stress stability (ΔVTH-PBTS/NBTS = +0.08 V/−0.05 V). Notably, the entire fabrication process is carried out at a maximum temperature of only 150 °C, demonstrating a low thermal budget. Furthermore, TCAD simulations are performed to verify that the dual-gate architecture facilitates bulk conduction across the channel, effectively suppressing interface trapping and enhancing bias-temperature-stress stability. This study offers a practical strategy for optimizing TFT performance parameters, with promising applications in high-performance, low-temperature, and flexible electronics.
用低热预算实现高迁移率和高稳定性的DG IGZO tft
在氧化薄膜晶体管(TFTs)中同时实现高迁移率、高稳定性和低热预算仍然是下一代显示器和柔性电子产品的关键挑战。我们提出了一种优化的非晶in -ga - zn - o (a- igzo) tft的策略,将氧等离子体预处理与双栅结构相结合,从而在所有三个关键性能指标上实现协同增强。在Al2O3顶部电介质原子层沉积前进行1 min的氧等离子体处理,有利于三甲基铝的吸附,抑制晶格损伤,从而获得30.99 cm2/V·s的高场效应迁移率和良好的环境稳定性。双栅结构进一步将器件迁移率提高到44.99 cm2/V·s,并提高了偏置应力稳定性(ΔVTH-PBTS/NBTS = +0.08 V/−0.05 V)。值得注意的是,整个制造过程的最高温度仅为150°C,显示出较低的热预算。此外,通过TCAD仿真验证了双栅极结构促进了通道上的体传导,有效地抑制了界面捕获并提高了偏置温度应力稳定性。该研究为优化TFT性能参数提供了一种实用的策略,在高性能、低温和柔性电子领域具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信