Bidirectional electric-field control of quantum efficiency in Er3+-doped WSe2 monolayers: Up/down-conversion photonics for tunable optoelectronics

IF 4.6 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Wenjing Liu , Zhitao Lin , Hongquan Zhao , Min Xu , Shimao Feng , Yiming Shu , Mingjun Wang , Shuhao Li , Zhili Tong , Pengcheng Zeng , Xianguang Yang , Xuan Shi
{"title":"Bidirectional electric-field control of quantum efficiency in Er3+-doped WSe2 monolayers: Up/down-conversion photonics for tunable optoelectronics","authors":"Wenjing Liu ,&nbsp;Zhitao Lin ,&nbsp;Hongquan Zhao ,&nbsp;Min Xu ,&nbsp;Shimao Feng ,&nbsp;Yiming Shu ,&nbsp;Mingjun Wang ,&nbsp;Shuhao Li ,&nbsp;Zhili Tong ,&nbsp;Pengcheng Zeng ,&nbsp;Xianguang Yang ,&nbsp;Xuan Shi","doi":"10.1016/j.mssp.2025.110078","DOIUrl":null,"url":null,"abstract":"<div><div>High-concentration erbium-doped WSe<sub>2</sub> monolayer (7.2 at%) is synthesized via in-situ CVD, enabling electric-field-tunable photoluminescence (PL) with enhanced quantum efficiency. Structural characterization results verify the homogeneous incorporation of Er<sup>3+</sup> into the host WSe<sub>2</sub>, while gate-controlled devices reveal bidirectional modulation of up/down-conversion PL. The material exhibits broadband emission from UV to visible and near-infrared under 980 nm excitation, and a distinct 780 nm visible peak under 532 nm excitation. Vertical electric fields suppress PL under positive bias but boost up-conversion efficiency under negative bias. Through first-principles calculations, this is attributed to field-induced bandgap narrowing and enhanced electron-hole symmetry. These factors together promote radiative recombination. Power-dependent PL confirms stable exciton/trion emission, supporting high-power applications. This synergy of rare-earth doping and field engineering advances tunable optoelectronics, including adaptive photodetectors, bioimaging, and energy-efficient cooling systems.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"201 ","pages":"Article 110078"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125008157","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

High-concentration erbium-doped WSe2 monolayer (7.2 at%) is synthesized via in-situ CVD, enabling electric-field-tunable photoluminescence (PL) with enhanced quantum efficiency. Structural characterization results verify the homogeneous incorporation of Er3+ into the host WSe2, while gate-controlled devices reveal bidirectional modulation of up/down-conversion PL. The material exhibits broadband emission from UV to visible and near-infrared under 980 nm excitation, and a distinct 780 nm visible peak under 532 nm excitation. Vertical electric fields suppress PL under positive bias but boost up-conversion efficiency under negative bias. Through first-principles calculations, this is attributed to field-induced bandgap narrowing and enhanced electron-hole symmetry. These factors together promote radiative recombination. Power-dependent PL confirms stable exciton/trion emission, supporting high-power applications. This synergy of rare-earth doping and field engineering advances tunable optoelectronics, including adaptive photodetectors, bioimaging, and energy-efficient cooling systems.
Er3+掺杂WSe2单层中量子效率的双向电场控制:可调谐光电子学的上/下转换光子学
通过原位CVD法合成了高浓度掺铒WSe2单层(7.2 at%),实现了量子效率提高的电场可调谐光致发光(PL)。结构表征结果证实Er3+均匀地结合到宿主WSe2中,而门控器件显示双向调制的上/下转换PL。该材料在980 nm激发下表现出从紫外到可见光和近红外的宽带发射,在532 nm激发下表现出明显的780 nm可见峰。垂直电场在正偏压下抑制PL,在负偏压下提高上转换效率。通过第一性原理计算,这归因于场诱导的带隙缩小和电子-空穴对称性增强。这些因素共同促进了辐射复合。功率依赖PL确认稳定的激子/三角子发射,支持高功率应用。稀土掺杂和现场工程的协同作用推进了可调谐光电子学,包括自适应光电探测器、生物成像和节能冷却系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信