Influence of the Twist Angle and Spin–Orbit Coupling on the Interlayer Coupling and Optoelectronic Properties of MoS2/WS2 Superlattice Heterostructures
IF 5.3 2区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Influence of the Twist Angle and Spin–Orbit Coupling on the Interlayer Coupling and Optoelectronic Properties of MoS2/WS2 Superlattice Heterostructures","authors":"Shaofeng Wang, Qing Wang, Yuqiang Wu, Mengtao Sun, Wen Liu, Shuo Cao","doi":"10.1002/aelm.202500148","DOIUrl":null,"url":null,"abstract":"<p>Twisted 2D bilayer transition metal dichalcogenides (TMDs) heterostructures exhibit rich physical properties due to the interaction of interlayer coupling and moiré superlattice effects. However, the influence of interlayer coupling changes induced by the twist angle on various TMDs properties still requires further exploration. To systematically investigate how the twist angle influences the structural, electronic and optical properties of TMDs, density functional theory (DFT) is used to examine <span></span><math>\n <semantics>\n <msqrt>\n <mn>7</mn>\n </msqrt>\n <annotation>$\\sqrt 7 $</annotation>\n </semantics></math> MoS<sub>2</sub>/WS<sub>2</sub> superlattice heterostructures. Compared with that of the 2H stack, the interlayer coupling effect is weakened in the 21.79° and particularly 38.21° stacked heterostructures. A larger twist angle promotes an indirect-to-direct bandgap transition trend. Additionally, the twist angle can cause interlayer charge redistribution, which varies with the moiré pattern. Moreover, spin‒orbit coupling (SOC) causes a redshift by reducing the bandgap in the absorption spectra, and the twist angle suppresses interlayer direct transitions in the 𝜥 valley and alters the Raman and infrared spectra, with low-frequency Raman modes providing a powerful tool for characterizing changes in interlayer coupling. These findings highlight the critical role of the twist angle in tuning the properties of TMDs heterostructures, with promising implications for optoelectronic and valleytronic applications.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 15","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202500148","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aelm.202500148","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Twisted 2D bilayer transition metal dichalcogenides (TMDs) heterostructures exhibit rich physical properties due to the interaction of interlayer coupling and moiré superlattice effects. However, the influence of interlayer coupling changes induced by the twist angle on various TMDs properties still requires further exploration. To systematically investigate how the twist angle influences the structural, electronic and optical properties of TMDs, density functional theory (DFT) is used to examine MoS2/WS2 superlattice heterostructures. Compared with that of the 2H stack, the interlayer coupling effect is weakened in the 21.79° and particularly 38.21° stacked heterostructures. A larger twist angle promotes an indirect-to-direct bandgap transition trend. Additionally, the twist angle can cause interlayer charge redistribution, which varies with the moiré pattern. Moreover, spin‒orbit coupling (SOC) causes a redshift by reducing the bandgap in the absorption spectra, and the twist angle suppresses interlayer direct transitions in the 𝜥 valley and alters the Raman and infrared spectra, with low-frequency Raman modes providing a powerful tool for characterizing changes in interlayer coupling. These findings highlight the critical role of the twist angle in tuning the properties of TMDs heterostructures, with promising implications for optoelectronic and valleytronic applications.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.