Eigenvalues and signature of quadratic forms associated with finite topological spaces

IF 1.1 3区 数学 Q1 MATHEMATICS
Pedro J. Chocano
{"title":"Eigenvalues and signature of quadratic forms associated with finite topological spaces","authors":"Pedro J. Chocano","doi":"10.1016/j.laa.2025.09.007","DOIUrl":null,"url":null,"abstract":"<div><div>Given any finite topological space <em>X</em> and a field <span><math><mi>K</mi></math></span>, we associate a quadratic space <span><math><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>)</mo></math></span>, consisting of a vector space <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> over <span><math><mi>K</mi></math></span> and a quadratic form <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>:</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>×</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>→</mo><mi>K</mi></math></span>, to <em>X</em>. The eigenvalues and signature of <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> are topological invariants of <em>X</em>. We study their relations with <em>X</em>. From this, we obtain restrictions to check whether a finite topological space can be embedded into another one. Additionally, we compute these invariants for minimal finite models of spheres and other families of finite spaces.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 263-282"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525003738","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given any finite topological space X and a field K, we associate a quadratic space (QX,VX), consisting of a vector space VX over K and a quadratic form QX:VX×VXK, to X. The eigenvalues and signature of QX are topological invariants of X. We study their relations with X. From this, we obtain restrictions to check whether a finite topological space can be embedded into another one. Additionally, we compute these invariants for minimal finite models of spheres and other families of finite spaces.
有限拓扑空间二次型的特征值与特征
给定一个有限拓扑空间X和一个域K,我们将一个由K上的向量空间VX和二次形式QX:VX×VX→K组成的二次空间(QX,VX)关联到X。QX的特征值和签名是X的拓扑不变量,我们研究了它们与X的关系。由此得到了检验一个有限拓扑空间能否嵌入到另一个有限拓扑空间中的限制条件。此外,我们计算了球面和其他有限空间族的最小有限模型的不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信