Toshiyuki Oishi , Ken Kudara , Yutaro Yamaguchi , Shintaro Shinjo , Koji Yamanaka , Saga University , Mitsubishi Electric Corporation
{"title":"Study on drain bias dependence of Y-parameters under on-state condition in GaN HEMTs using low-frequency vector network analyzer and device simulation","authors":"Toshiyuki Oishi , Ken Kudara , Yutaro Yamaguchi , Shintaro Shinjo , Koji Yamanaka , Saga University , Mitsubishi Electric Corporation","doi":"10.1016/j.sse.2025.109245","DOIUrl":null,"url":null,"abstract":"<div><div>The drain bias dependence of low-frequency Y-parameters under on-state conditions in Gallium Nitride high electron mobility transistors (GaN HEMTs) is investigated using experimental results and device simulation. The Y-parameters for broadband frequencies from 10 Hz to 100 MHz were systematically measured using a vector network analyzer for drain voltage from 3 to 30 V at the gate voltage of 0 V from room temperature to 120 degrees Celsius. Six signals with the peaks were observed in the imaginary parts (Im) of Y<sub>22</sub> and Y<sub>21</sub>. These peaks were categorized into two groups. One is that the peaks appeared around 5 MHz and have negative slopes in Arrhenius plots. Another is that the peaks appeared below 150 kHz and have an activation energy that can be estimated from Arrhenius plots. The second group was further divided into peaks appeared in both Im(Y<sub>22</sub>) and Im(Y<sub>21</sub>), and those that appeared only in Im(Y<sub>21</sub>). The device simulation including self-heating effects was performed using the trap parameters estimated from the experimental results. Both DC and Y-parameter characteristics for the simulation have good agreement with the experimental results. By the simulation for the individual effects, the peaks around 5 MHz result from the heat generation in GaN HEMTs. The peaks below 150 kHz are considered to originate from the traps in AlGaN and GaN layers. The traps in the GaN layer generate the peaks in both Im(Y<sub>22</sub>) and Im(Y<sub>21</sub>), while the traps in the AlGaN layer generate peaks in only Im(Y<sub>21</sub>).</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"230 ","pages":"Article 109245"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003811012500190X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The drain bias dependence of low-frequency Y-parameters under on-state conditions in Gallium Nitride high electron mobility transistors (GaN HEMTs) is investigated using experimental results and device simulation. The Y-parameters for broadband frequencies from 10 Hz to 100 MHz were systematically measured using a vector network analyzer for drain voltage from 3 to 30 V at the gate voltage of 0 V from room temperature to 120 degrees Celsius. Six signals with the peaks were observed in the imaginary parts (Im) of Y22 and Y21. These peaks were categorized into two groups. One is that the peaks appeared around 5 MHz and have negative slopes in Arrhenius plots. Another is that the peaks appeared below 150 kHz and have an activation energy that can be estimated from Arrhenius plots. The second group was further divided into peaks appeared in both Im(Y22) and Im(Y21), and those that appeared only in Im(Y21). The device simulation including self-heating effects was performed using the trap parameters estimated from the experimental results. Both DC and Y-parameter characteristics for the simulation have good agreement with the experimental results. By the simulation for the individual effects, the peaks around 5 MHz result from the heat generation in GaN HEMTs. The peaks below 150 kHz are considered to originate from the traps in AlGaN and GaN layers. The traps in the GaN layer generate the peaks in both Im(Y22) and Im(Y21), while the traps in the AlGaN layer generate peaks in only Im(Y21).
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.