Ion-modulated hydrothermal growth: A game-changing strategy for high-performance Sb2(S,Se)3 solar cells with minimized recombination losses

IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chenlong Gao , Congrui Liu , Yichao Wang, Chengwu Ruan, Pengfei Wang, Yan Zhang, Jun Xu, Junwei Chen
{"title":"Ion-modulated hydrothermal growth: A game-changing strategy for high-performance Sb2(S,Se)3 solar cells with minimized recombination losses","authors":"Chenlong Gao ,&nbsp;Congrui Liu ,&nbsp;Yichao Wang,&nbsp;Chengwu Ruan,&nbsp;Pengfei Wang,&nbsp;Yan Zhang,&nbsp;Jun Xu,&nbsp;Junwei Chen","doi":"10.1016/j.mtphys.2025.101871","DOIUrl":null,"url":null,"abstract":"<div><div>Sb<sub>2</sub>(S,Se)<sub>3</sub> has garnered significant interest as a light-harvesting material owing to its exceptional photovoltaic properties. However, conventional hydrothermal synthesis yields Sb<sub>2</sub>(S,Se)<sub>3</sub> films exhibiting detrimental energy-level inversion and high defect density (e.g., S vacancy/antisite defects) and severely limiting device performance. To address these limitations, we developed an Cs<sup>+</sup> ion-modulated hydrothermal growth (IHG) strategy that eliminates programmed-temperature ramping, enabling direct construction of high-quality Sb<sub>2</sub>(S,Se)<sub>3</sub> bulk heterojunctions (BHJs). This approach simultaneously enlarges grain dimensions and crystal size (0.40 μm → 0.75 μm), and enhances out-of-plane charge transport along the [<em>hkl</em>, <em>l ≠ 0</em>] orientation, effectively suppressing reversed unfavorable Se-gradients distribution while passivating deep-level defects of Sb<sub>2</sub>(S,Se)<sub>3</sub> films. Ultimately, Sb<sub>2</sub>(S,Se)<sub>3</sub> solar cells incorporating IHG-engineered BHJs demonstrate significantly reduced carrier recombination and extended carrier lifetimes (enhancing∼150.5 %), yielding a champion power conversion efficiency of 8.66 % – representing the state-of-the-art for BHJ Sb<sub>2</sub>(S,Se)<sub>3</sub> photovoltaics. This IHG paradigm establishes a transformative pathway for fabricating high-performance Sb<sub>2</sub>(S,Se)<sub>3</sub> BHJ films and next-generation photovoltaics, redefining quality standards beyond conventional synthesis limitations.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"58 ","pages":"Article 101871"},"PeriodicalIF":9.7000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325002275","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sb2(S,Se)3 has garnered significant interest as a light-harvesting material owing to its exceptional photovoltaic properties. However, conventional hydrothermal synthesis yields Sb2(S,Se)3 films exhibiting detrimental energy-level inversion and high defect density (e.g., S vacancy/antisite defects) and severely limiting device performance. To address these limitations, we developed an Cs+ ion-modulated hydrothermal growth (IHG) strategy that eliminates programmed-temperature ramping, enabling direct construction of high-quality Sb2(S,Se)3 bulk heterojunctions (BHJs). This approach simultaneously enlarges grain dimensions and crystal size (0.40 μm → 0.75 μm), and enhances out-of-plane charge transport along the [hkl, l ≠ 0] orientation, effectively suppressing reversed unfavorable Se-gradients distribution while passivating deep-level defects of Sb2(S,Se)3 films. Ultimately, Sb2(S,Se)3 solar cells incorporating IHG-engineered BHJs demonstrate significantly reduced carrier recombination and extended carrier lifetimes (enhancing∼150.5 %), yielding a champion power conversion efficiency of 8.66 % – representing the state-of-the-art for BHJ Sb2(S,Se)3 photovoltaics. This IHG paradigm establishes a transformative pathway for fabricating high-performance Sb2(S,Se)3 BHJ films and next-generation photovoltaics, redefining quality standards beyond conventional synthesis limitations.
离子调制水热生长:具有最小复合损失的高性能Sb2(S,Se)3太阳能电池的一种改变游戏规则的策略
Sb2(S,Se)3由于其独特的光伏特性而成为一种光收集材料。然而,传统的水热合成制得的Sb2(S,Se)3薄膜表现出有害的能级反转和高缺陷密度(例如S空位/反位缺陷),严重限制了器件性能。为了解决这些限制,我们开发了一种Cs+离子调制水热生长(IHG)策略,该策略消除了程序升温,从而可以直接构建高质量的Sb2(S,Se)3块异质结(BHJs)。该方法同时增大了晶粒尺寸和晶粒尺寸(0.40 μm→0.75 μm),增强了沿[hkl, l≠0]取向的面外电荷输运,有效抑制了反向不利的Se梯度分布,同时钝化了Sb2(S,Se)3薄膜的深层缺陷。最终,结合ihs工程BHJ的Sb2(S,Se)3太阳能电池显示出显著减少载流子重组和延长载流子寿命(提高~ 150.5%),产生8.66%的能量转换效率,代表了BHJ Sb2(S,Se)3光伏电池的最新技术。这种IHG模式为制造高性能Sb2(S,Se)3 BHJ薄膜和下一代光伏电池建立了一条变革性的途径,重新定义了超越传统合成限制的质量标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信