Stabilized negative capacitance for near-theoretical efficiency and high reliability in charge trap flash memory

IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sangho Lee , Giuk Kim , Yunseok Nam , Yangjin Jeong , Hyunjun Kang , Woongjin Kim , Hunbeom Shin , Mincheol Shin , Sanghyun Park , Kwangyou Seo , Kwangsoo Kim , Wanki Kim , Daewon Ha , Jinho Ahn , Sanghun Jeon
{"title":"Stabilized negative capacitance for near-theoretical efficiency and high reliability in charge trap flash memory","authors":"Sangho Lee ,&nbsp;Giuk Kim ,&nbsp;Yunseok Nam ,&nbsp;Yangjin Jeong ,&nbsp;Hyunjun Kang ,&nbsp;Woongjin Kim ,&nbsp;Hunbeom Shin ,&nbsp;Mincheol Shin ,&nbsp;Sanghyun Park ,&nbsp;Kwangyou Seo ,&nbsp;Kwangsoo Kim ,&nbsp;Wanki Kim ,&nbsp;Daewon Ha ,&nbsp;Jinho Ahn ,&nbsp;Sanghun Jeon","doi":"10.1016/j.mtphys.2025.101865","DOIUrl":null,"url":null,"abstract":"<div><div>Negative capacitance (NC) in ferroelectric heterostructures offers a promising pathway to internal voltage application for energy-efficient electronics. However, its adoption in non-volatile memory has been hindered by instability and limited endurance. Here, we demonstrate a stabilized NC-enhanced charge trap flash (NC-CTF) memory that simultaneously achieves high programming efficiency, long retention, and robust cycling endurance through dual interfacial engineering. An ultrathin Al<sub>2</sub>O<sub>3</sub> interlayer in Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> (HZO) modulates domain configurations and promotes energy redistribution into depolarization energy, reinforcing the NC effect. Simultaneously, a TiO<sub>2</sub> layer between the charge trap layer (CTL) and blocking oxide (BO) increases the conduction band offset, suppressing parasitic charge injection and degradation. As a result, the NC-CTF device achieves a near-ideal incremental step pulse programming (ISPP) slope of ∼0.95, a 13.4 V memory window enabling quad-level cell (QLC) operation, and endurance exceeding 10<sup>4</sup> program/erase cycles. The integration of NC physics with flash memory architecture offers a scalable and CMOS-compatible platform for ultra-low-power memory and neuromorphic computing, contributing to the advancement of energy-efficient and intelligent nano-electronic systems.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"58 ","pages":"Article 101865"},"PeriodicalIF":9.7000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325002214","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Negative capacitance (NC) in ferroelectric heterostructures offers a promising pathway to internal voltage application for energy-efficient electronics. However, its adoption in non-volatile memory has been hindered by instability and limited endurance. Here, we demonstrate a stabilized NC-enhanced charge trap flash (NC-CTF) memory that simultaneously achieves high programming efficiency, long retention, and robust cycling endurance through dual interfacial engineering. An ultrathin Al2O3 interlayer in Hf0.5Zr0.5O2 (HZO) modulates domain configurations and promotes energy redistribution into depolarization energy, reinforcing the NC effect. Simultaneously, a TiO2 layer between the charge trap layer (CTL) and blocking oxide (BO) increases the conduction band offset, suppressing parasitic charge injection and degradation. As a result, the NC-CTF device achieves a near-ideal incremental step pulse programming (ISPP) slope of ∼0.95, a 13.4 V memory window enabling quad-level cell (QLC) operation, and endurance exceeding 104 program/erase cycles. The integration of NC physics with flash memory architecture offers a scalable and CMOS-compatible platform for ultra-low-power memory and neuromorphic computing, contributing to the advancement of energy-efficient and intelligent nano-electronic systems.
稳定负电容在电荷阱快闪存储器中的接近理论效率和高可靠性
铁电异质结构中的负电容(NC)为节能电子器件的内电压应用提供了一条有前途的途径。然而,它在非易失性存储器中的采用受到不稳定性和有限耐用性的阻碍。在这里,我们展示了一种稳定的nc增强型电荷阱闪存(NC-CTF)存储器,该存储器通过双界面工程同时实现了高编程效率、长保留时间和强大的循环耐久性。Hf0.5Zr0.5O2 (HZO)中的超薄Al2O3中间层调节畴构型,促进能量重新分配为退极化能,增强NC效应。同时,电荷阱层(CTL)和阻断氧化物(BO)之间的TiO2层增加了导带偏移,抑制了寄生电荷注入和降解。因此,NC-CTF器件实现了接近理想的增量阶跃脉冲编程(ISPP)斜率为~ 0.95,13.4 V的存储窗口使四电平单元(QLC)运行,并且续航时间超过104个程序/擦除周期。NC物理与闪存架构的集成为超低功耗存储器和神经形态计算提供了可扩展和cmos兼容的平台,有助于节能和智能纳米电子系统的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信