James L. Bonanno , Ciara F. O’Brien , William B.J. Cafferty
{"title":"REVS: A new open-source platform for high-resolution analysis of rodent wheel running behavior","authors":"James L. Bonanno , Ciara F. O’Brien , William B.J. Cafferty","doi":"10.1016/j.jneumeth.2025.110581","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Rodent wheel running is widely used in neuroscience and preclinical research to assess locomotor function, recovery post-trauma or disease, circadian rhythms, and exercise physiology. However, most existing wheel-running systems offer limited metrics, lack flexibility in hardware, or require costly proprietary software, reducing their usefulness for detailed behavioral phenotyping—especially in models of injury or rehabilitation.</div></div><div><h3>New method</h3><div>We developed REVS (Revolution Evaluation and Visualization Software), a low-cost, open-source hardware and software platform for analyzing and visualizing rodent wheel running behavior. REVS captures wheel revolutions using Hall effect sensors and computes 13 day-level behavioral metrics along with detailed bout-level data. Users can interactively explore high-resolution temporal features and export data in Open Data Commons (ODC)-compatible formats. REVS supports customizable wheel types, facilitating use in animals with motor and/or sensory impairments.</div></div><div><h3>Results</h3><div>We validated REVS using a mouse model of partial spinal cord injury, where fine motor control is compromised. REVS detected impairments in 10 of 13 behavioral metrics post-injury, with varied recovery trajectories across measures. Principal component analysis revealed that recovery was closely linked to bout quality and intensity, rather than timing.</div></div><div><h3>Comparison with existing methods</h3><div>Unlike commercial and open-source systems, REVS offers more detailed metrics, customizable wheel compatibility, seamless blending with common vivarium hardware, integrated data visualizations, and ODC-compatible data export. It also supports flexible analysis across individuals and groups.</div></div><div><h3>Conclusions</h3><div>REVS provides a powerful, scalable tool for granular behavioral phenotyping in rodent studies, enhancing reproducibility and revealing insights into subtle locomotor changes associated with injury, recovery, and intervention.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"424 ","pages":"Article 110581"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027025002250","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Rodent wheel running is widely used in neuroscience and preclinical research to assess locomotor function, recovery post-trauma or disease, circadian rhythms, and exercise physiology. However, most existing wheel-running systems offer limited metrics, lack flexibility in hardware, or require costly proprietary software, reducing their usefulness for detailed behavioral phenotyping—especially in models of injury or rehabilitation.
New method
We developed REVS (Revolution Evaluation and Visualization Software), a low-cost, open-source hardware and software platform for analyzing and visualizing rodent wheel running behavior. REVS captures wheel revolutions using Hall effect sensors and computes 13 day-level behavioral metrics along with detailed bout-level data. Users can interactively explore high-resolution temporal features and export data in Open Data Commons (ODC)-compatible formats. REVS supports customizable wheel types, facilitating use in animals with motor and/or sensory impairments.
Results
We validated REVS using a mouse model of partial spinal cord injury, where fine motor control is compromised. REVS detected impairments in 10 of 13 behavioral metrics post-injury, with varied recovery trajectories across measures. Principal component analysis revealed that recovery was closely linked to bout quality and intensity, rather than timing.
Comparison with existing methods
Unlike commercial and open-source systems, REVS offers more detailed metrics, customizable wheel compatibility, seamless blending with common vivarium hardware, integrated data visualizations, and ODC-compatible data export. It also supports flexible analysis across individuals and groups.
Conclusions
REVS provides a powerful, scalable tool for granular behavioral phenotyping in rodent studies, enhancing reproducibility and revealing insights into subtle locomotor changes associated with injury, recovery, and intervention.
期刊介绍:
The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.