Molecular engineering of acetylenic dithieno[3,2-b:2′,3′-d]thiophene derivatives for organic field-effect transistors

IF 4.6 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Junyeop Yoo , EunJeong Lee , Sejoong Kim , Ming-Chou Chen , Choongik Kim , SungYong Seo
{"title":"Molecular engineering of acetylenic dithieno[3,2-b:2′,3′-d]thiophene derivatives for organic field-effect transistors","authors":"Junyeop Yoo ,&nbsp;EunJeong Lee ,&nbsp;Sejoong Kim ,&nbsp;Ming-Chou Chen ,&nbsp;Choongik Kim ,&nbsp;SungYong Seo","doi":"10.1016/j.mssp.2025.110051","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we report a series of dithieno[3,2-b:2′,3′-d]thiophene (DTT)-based small molecules featuring five different end-capping substituents: 2-octyl-6-(5-(phenylethynyl)thiophen-2-yl)dithieno[3,2-b:2′,3′-d]thiophene (compound <strong>1</strong>), triisopropyl((5-(6-octyldithieno[3,2-b:2′,3′-d]thiophen-2-yl)thiophen-2-yl)ethynyl)silane (compound <strong>2</strong>), 2-octyl-6-(5-(thiophen-2-ylethynyl)thiophen-2-yl)dithieno[3,2-b:2′,3′-d]thiophene (compound <strong>3</strong>), 2-octyl-6-(5-((5-octylthiophen-2-yl)ethynyl)thiophen-2-yl)dithieno[3,2-b:2′,3′-d]thiophene (compound <strong>4</strong>), and 2-(5-((5-(2-ethylhexyl)thiophen-2-yl)ethynyl)thiophen-2-yl)-6-octyldithieno[3,2-b:2′,3′-d]thiophene (compound <strong>5</strong>). To enhance solubility, one-sided linear octyl chain was introduced on the DTT core, while extended π-conjugation was achieved through the incorporation of additional thiophene rings and acetylenic linkages to promote effective charge transport. The thermal stability, optical absorption, and redox characteristics of the synthesized molecules were studied via thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), UV–vis spectroscopy, and cyclic voltammetry (CV). The DTT thin films formed via solution shearing were characterized by atomic force microscopy (AFM) and X-ray diffraction (XRD) to examine surface topology and molecular arrangement. When implemented as active materials in organic field-effect transistors (OFETs), all five compounds displayed p-type semiconducting behavior. Among them, compound <strong>3</strong>, which possesses a thienyl terminal group without bulky alkyl side chains, exhibited the most favorable charge transport characteristics under ambient atmosphere, attaining a carrier mobility of 0.036 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> and an on/off current ratio above 10<sup>6</sup>. These observations underscore the importance of rational side-chain modification in optimizing molecular assembly and film crystallinity to enhance OFET performance.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"201 ","pages":"Article 110051"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125007887","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we report a series of dithieno[3,2-b:2′,3′-d]thiophene (DTT)-based small molecules featuring five different end-capping substituents: 2-octyl-6-(5-(phenylethynyl)thiophen-2-yl)dithieno[3,2-b:2′,3′-d]thiophene (compound 1), triisopropyl((5-(6-octyldithieno[3,2-b:2′,3′-d]thiophen-2-yl)thiophen-2-yl)ethynyl)silane (compound 2), 2-octyl-6-(5-(thiophen-2-ylethynyl)thiophen-2-yl)dithieno[3,2-b:2′,3′-d]thiophene (compound 3), 2-octyl-6-(5-((5-octylthiophen-2-yl)ethynyl)thiophen-2-yl)dithieno[3,2-b:2′,3′-d]thiophene (compound 4), and 2-(5-((5-(2-ethylhexyl)thiophen-2-yl)ethynyl)thiophen-2-yl)-6-octyldithieno[3,2-b:2′,3′-d]thiophene (compound 5). To enhance solubility, one-sided linear octyl chain was introduced on the DTT core, while extended π-conjugation was achieved through the incorporation of additional thiophene rings and acetylenic linkages to promote effective charge transport. The thermal stability, optical absorption, and redox characteristics of the synthesized molecules were studied via thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), UV–vis spectroscopy, and cyclic voltammetry (CV). The DTT thin films formed via solution shearing were characterized by atomic force microscopy (AFM) and X-ray diffraction (XRD) to examine surface topology and molecular arrangement. When implemented as active materials in organic field-effect transistors (OFETs), all five compounds displayed p-type semiconducting behavior. Among them, compound 3, which possesses a thienyl terminal group without bulky alkyl side chains, exhibited the most favorable charge transport characteristics under ambient atmosphere, attaining a carrier mobility of 0.036 cm2 V−1 s−1 and an on/off current ratio above 106. These observations underscore the importance of rational side-chain modification in optimizing molecular assembly and film crystallinity to enhance OFET performance.
[3,2-b:2 ',3 ' -d]噻吩衍生物在有机场效应晶体管中的分子工程
在这项研究中,我们报道了一系列基于二噻吩[3,2-b:2 ',3 ' -d]噻吩(DTT)的小分子,它们具有五种不同的端盖取代基:2-辛基-6-(5-(苯基乙基)噻吩-2-基)二噻吩[3,2-b:2 ',3 ' -d]噻吩(化合物1),三异丙基((5-(6-辛基二噻吩- 3,2-b:2 ',3 ' -d)噻吩-2-基)二噻吩[3,2-b:2 ',3 ' -d]硅烷(化合物2),2-辛基-6-(5-(噻吩-2-乙基)噻吩-2-基)二噻吩[3,2-b:2 ',3 ' -d]噻吩(化合物3),2-辛基-6-(5-(5-辛基噻吩-2-基)乙基)噻吩-2-基)二噻吩[3,2-b:2 ',3 ' -d]噻吩(化合物4)和2-(5-(5-(2-乙基己基)噻吩-2-基)乙基)噻吩-2-基-6-辛基二噻吩[3,2-b:2 ',3 ' -d]噻吩(化合物5)。为了提高溶解度,在DTT核上引入单侧线性辛烷链,并通过加入额外的噻吩环和乙炔键来实现扩展π共轭,以促进有效的电荷传递。通过热重分析(TGA)、差示扫描量热法(DSC)、紫外可见光谱(UV-vis)和循环伏安法(CV)研究了合成分子的热稳定性、光吸收和氧化还原特性。通过原子力显微镜(AFM)和x射线衍射仪(XRD)对溶液剪切形成的DTT薄膜进行了表征,考察了表面拓扑结构和分子排列。当在有机场效应晶体管(ofet)中作为活性材料实现时,所有五种化合物都表现出p型半导体行为。其中,化合物3在环境气氛下表现出最有利的电荷输运特性,其载流子迁移率为0.036 cm2 V−1 s−1,通断电流比大于106。这些观察结果强调了合理侧链修饰在优化分子组装和薄膜结晶度以提高OFET性能方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信