Hong Xu , Xueting Bi , Junjie Xing , Mengqian Guo , Haoran Zhang , Xuejie Zhang , Wei Li , Bingfu Lei
{"title":"Regulatory role of calcium sulfide in ripening delay of postharvest bananas","authors":"Hong Xu , Xueting Bi , Junjie Xing , Mengqian Guo , Haoran Zhang , Xuejie Zhang , Wei Li , Bingfu Lei","doi":"10.1016/j.fochms.2025.100297","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen sulfide (H₂S) has been demonstrated to delay ripening and senescence in various fruits, offering great capability for postharvest preservation. However, existing application methods face several limitations, such as unstable release, difficulty in dosage control, and safety concerns, and its regulatory mechanisms in fruit systems remain unclear. In this study, calcium sulfide (CaS) was used as a slow-release H₂S donor that gradually releases H₂S through reactions with airborne moisture and carbon dioxide to treat bananas. CaS treatment significantly downregulated key ethylene biosynthetic genes and corresponding enzymes (ACO and ACS), thereby reducing ethylene production. The expression of starch-degrading and cell wall-modifying genes was also suppressed, delaying starch breakdown and cell wall disassembly. Enzyme assays and transcriptomic analyses confirmed that CaS delays banana ripening through coordinated regulation at both transcriptional and biochemical levels. As a result, CaS treatment effectively extended shelf life and maintained fruit quality of bananas. These findings reveal the potential of CaS as a novel H₂S-releasing agent for postharvest preservation.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"11 ","pages":"Article 100297"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666566225000589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen sulfide (H₂S) has been demonstrated to delay ripening and senescence in various fruits, offering great capability for postharvest preservation. However, existing application methods face several limitations, such as unstable release, difficulty in dosage control, and safety concerns, and its regulatory mechanisms in fruit systems remain unclear. In this study, calcium sulfide (CaS) was used as a slow-release H₂S donor that gradually releases H₂S through reactions with airborne moisture and carbon dioxide to treat bananas. CaS treatment significantly downregulated key ethylene biosynthetic genes and corresponding enzymes (ACO and ACS), thereby reducing ethylene production. The expression of starch-degrading and cell wall-modifying genes was also suppressed, delaying starch breakdown and cell wall disassembly. Enzyme assays and transcriptomic analyses confirmed that CaS delays banana ripening through coordinated regulation at both transcriptional and biochemical levels. As a result, CaS treatment effectively extended shelf life and maintained fruit quality of bananas. These findings reveal the potential of CaS as a novel H₂S-releasing agent for postharvest preservation.
期刊介绍:
Food Chemistry: Molecular Sciences is one of three companion journals to the highly respected Food Chemistry.
Food Chemistry: Molecular Sciences is an open access journal publishing research advancing the theory and practice of molecular sciences of foods.
The types of articles considered are original research articles, analytical methods, comprehensive reviews and commentaries.
Topics include:
Molecular sciences relating to major and minor components of food (nutrients and bioactives) and their physiological, sensory, flavour, and microbiological aspects; data must be sufficient to demonstrate relevance to foods and as consumed by humans
Changes in molecular composition or structure in foods occurring or induced during growth, distribution and processing (industrial or domestic) or as a result of human metabolism
Quality, safety, authenticity and traceability of foods and packaging materials
Valorisation of food waste arising from processing and exploitation of by-products
Molecular sciences of additives, contaminants including agro-chemicals, together with their metabolism, food fate and benefit: risk to human health
Novel analytical and computational (bioinformatics) methods related to foods as consumed, nutrients and bioactives, sensory, metabolic fate, and origins of foods. Articles must be concerned with new or novel methods or novel uses and must be applied to real-world samples to demonstrate robustness. Those dealing with significant improvements to existing methods or foods and commodities from different regions, and re-use of existing data will be considered, provided authors can establish sufficient originality.