Emma K. Ellis, , , Laura P. Ióca, , , Jie Liu, , , Manyun Chen, , , Steven D. Bruner, , , Yousong Ding, , , Valerie J. Paul, , , Mohamed S. Donia*, , and , Hendrik Luesch*,
{"title":"Structure Determination and Biosynthesis of Dapalides A–C, Glycosylated Kahalalide F Analogues from the Marine Cyanobacterium Dapis sp","authors":"Emma K. Ellis, , , Laura P. Ióca, , , Jie Liu, , , Manyun Chen, , , Steven D. Bruner, , , Yousong Ding, , , Valerie J. Paul, , , Mohamed S. Donia*, , and , Hendrik Luesch*, ","doi":"10.1021/acs.jnatprod.5c00757","DOIUrl":null,"url":null,"abstract":"<p >Kahalalides were originally isolated from the marine mollusk <i>Elysia rufescens</i> and its green algal diet <i>Bryopsis</i> sp., but the true producer was revealed as the obligate bacterial symbiont <i>Candidatus</i> Endobryopsis kahalalidefaciens, residing within <i>Bryopsis</i> sp. The most notable is kahalalide F, a broad-spectrum antitumor depsipeptide that entered the clinic but failed from lack of efficacy. We have isolated three new glycosylated analogues of kahalalide F, termed dapalides A–C (<b>1</b>–<b>3</b>), from a marine cyanobacterium, <i>Dapis</i> sp., collected from Guam. The planar structures were determined by extensive NMR coupled with mass spectrometry. Acid hydrolysis of <b>1</b> using amino acid analysis revealed the absolute configuration of singlet and a mixture of duplicate amino acids. Metagenomic analysis unveiled a biosynthetic gene cluster (BGC) with a nonribosomal peptide synthetase (NRPS) system and downstream glycosylation enzymes, which assisted the configurational assignment through epimerization domain analysis. The discovered BGC, termed <i>dap</i>, was assigned to a high-quality metagenome-assembled genome of the <i>Dapis</i> sp. Dapalide A (<b>1</b>) was subjected to phenotypic bioassays and exhibited weak anticancer cytotoxicity. This discovery expands the chemical diversity of the kahalalide F family, suggests their broad ecological role across diverse organisms, and presents an intriguing case of natural product biosynthesis evolution.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":"88 9","pages":"2138–2150"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.jnatprod.5c00757","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jnatprod.5c00757","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Kahalalides were originally isolated from the marine mollusk Elysia rufescens and its green algal diet Bryopsis sp., but the true producer was revealed as the obligate bacterial symbiont Candidatus Endobryopsis kahalalidefaciens, residing within Bryopsis sp. The most notable is kahalalide F, a broad-spectrum antitumor depsipeptide that entered the clinic but failed from lack of efficacy. We have isolated three new glycosylated analogues of kahalalide F, termed dapalides A–C (1–3), from a marine cyanobacterium, Dapis sp., collected from Guam. The planar structures were determined by extensive NMR coupled with mass spectrometry. Acid hydrolysis of 1 using amino acid analysis revealed the absolute configuration of singlet and a mixture of duplicate amino acids. Metagenomic analysis unveiled a biosynthetic gene cluster (BGC) with a nonribosomal peptide synthetase (NRPS) system and downstream glycosylation enzymes, which assisted the configurational assignment through epimerization domain analysis. The discovered BGC, termed dap, was assigned to a high-quality metagenome-assembled genome of the Dapis sp. Dapalide A (1) was subjected to phenotypic bioassays and exhibited weak anticancer cytotoxicity. This discovery expands the chemical diversity of the kahalalide F family, suggests their broad ecological role across diverse organisms, and presents an intriguing case of natural product biosynthesis evolution.
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.