Simultaneous Enhancement of Electrochemical Migration Lifetime and Reliability of Sintered Silver

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Bowen Zhang;Lijia Wang;Yilong Xie;Yiqin Liu;Youzheng Wang;Yi Liu;Yun-Hui Mei
{"title":"Simultaneous Enhancement of Electrochemical Migration Lifetime and Reliability of Sintered Silver","authors":"Bowen Zhang;Lijia Wang;Yilong Xie;Yiqin Liu;Youzheng Wang;Yi Liu;Yun-Hui Mei","doi":"10.1109/TDMR.2025.3598109","DOIUrl":null,"url":null,"abstract":"The high operation temperature and large voltage bias service environments of wide bandgap (WBG) devices often result in the failure of sintered silver layer due to electrochemical migration (ECM). Herein, novel silver-based paste was prepared by incorporating 5 wt% In particles (Ag-5%In), which effectively balanced the ECM lifetime and the reliability of bonding samples. During high temperatures (400 °C) and high voltages (400 V) ECM tests, the preferential formation of In2O3 in Ag-5%In paste effectively inhibited the oxidation and ionization processes of Ag, thereby prolonging the ECM failure time from 462 min to 839 min. In addition, the formation of Ag-In intermetallic compounds (IMCs) and the densification of interconnection layer resulted in high reliability of Ag-5%In paste during the thermal shock test (TST), with the average shear strength remaining around 24.6 MPa after 1000 TST cycles. The comprehensive ECM and mechanical reliability make the proposed Ag-5%In paste a promising packaging material for high-temperature and high-voltage applications of WBG devices.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 3","pages":"535-544"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11123510/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The high operation temperature and large voltage bias service environments of wide bandgap (WBG) devices often result in the failure of sintered silver layer due to electrochemical migration (ECM). Herein, novel silver-based paste was prepared by incorporating 5 wt% In particles (Ag-5%In), which effectively balanced the ECM lifetime and the reliability of bonding samples. During high temperatures (400 °C) and high voltages (400 V) ECM tests, the preferential formation of In2O3 in Ag-5%In paste effectively inhibited the oxidation and ionization processes of Ag, thereby prolonging the ECM failure time from 462 min to 839 min. In addition, the formation of Ag-In intermetallic compounds (IMCs) and the densification of interconnection layer resulted in high reliability of Ag-5%In paste during the thermal shock test (TST), with the average shear strength remaining around 24.6 MPa after 1000 TST cycles. The comprehensive ECM and mechanical reliability make the proposed Ag-5%In paste a promising packaging material for high-temperature and high-voltage applications of WBG devices.
同时提高烧结银的电化学迁移寿命和可靠性
宽带隙(WBG)器件的高工作温度和大电压偏置工作环境经常导致烧结银层因电化学迁移(ECM)而失效。本文通过加入5 wt% In颗粒(Ag-5%In)制备了新型银基浆料,有效地平衡了ECM寿命和粘接样品的可靠性。在高温(400℃)和高压(400 V) ECM试验中,Ag-5% in膏体中In2O3的优先形成有效地抑制了Ag的氧化和电离过程,从而将ECM失效时间从462 min延长到839 min。此外,Ag-In金属间化合物(IMCs)的形成和互连层的致密化使得Ag-5%In膏体在热冲击试验(TST)中具有较高的可靠性,在1000次热冲击循环后,其平均抗剪强度保持在24.6 MPa左右。全面的ECM和机械可靠性使所提出的Ag-5%In浆料成为高温高压WBG器件应用的有前途的封装材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Device and Materials Reliability
IEEE Transactions on Device and Materials Reliability 工程技术-工程:电子与电气
CiteScore
4.80
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信