Assessing the Reliability of DRAM CMOS Periphery: Comparing AC and DC Conditions for BTI and TDDB

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Alexandre Subirats;Mehran Samiee;Giovanni Ferrari;Uma Sharma;Takuya Imamoto;Masahiro Yokomichi;Shivani Srivastava;Karine Florent;Tim Owens
{"title":"Assessing the Reliability of DRAM CMOS Periphery: Comparing AC and DC Conditions for BTI and TDDB","authors":"Alexandre Subirats;Mehran Samiee;Giovanni Ferrari;Uma Sharma;Takuya Imamoto;Masahiro Yokomichi;Shivani Srivastava;Karine Florent;Tim Owens","doi":"10.1109/TDMR.2025.3595501","DOIUrl":null,"url":null,"abstract":"This paper presents an in-depth analysis of fast Bias Temperature Instability (BTI) and Time-Dependent Dielectric Breakdown (TDDB) in DRAM CMOS periphery devices, focusing on NMOS and PMOS transistors. Using rapid measurement techniques, we evaluate BTI degradation under both DC and AC stress modes. Our findings reveal that AC Negative BTI-Mode B (NBTI) shows frequency independence. Positive BTI (PBTI) in AC mode (A and B) also demonstrates frequency independence. Additionally, the study uncovers trends in TDDB behavior for NMOS and PMOS devices. PMOS TDDB performance improves at higher frequencies compared to DC, while NMOS TDDB shows degradation at lower frequencies with improved performance at higher frequencies. These results suggest a need for further investigation into the correlation between these reliability mechanisms to develop effective mitigation strategies. By exploring the relationships between BTI and TDDB, we aim to enhance the knowledge of those two similar (from the device point of view during stress) mechanisms","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 3","pages":"388-393"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11111699/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an in-depth analysis of fast Bias Temperature Instability (BTI) and Time-Dependent Dielectric Breakdown (TDDB) in DRAM CMOS periphery devices, focusing on NMOS and PMOS transistors. Using rapid measurement techniques, we evaluate BTI degradation under both DC and AC stress modes. Our findings reveal that AC Negative BTI-Mode B (NBTI) shows frequency independence. Positive BTI (PBTI) in AC mode (A and B) also demonstrates frequency independence. Additionally, the study uncovers trends in TDDB behavior for NMOS and PMOS devices. PMOS TDDB performance improves at higher frequencies compared to DC, while NMOS TDDB shows degradation at lower frequencies with improved performance at higher frequencies. These results suggest a need for further investigation into the correlation between these reliability mechanisms to develop effective mitigation strategies. By exploring the relationships between BTI and TDDB, we aim to enhance the knowledge of those two similar (from the device point of view during stress) mechanisms
评估DRAM CMOS外围器件的可靠性:比较BTI和TDDB的交流和直流条件
本文深入分析了DRAM CMOS外围器件中的快速偏置温度不稳定性(BTI)和时间相关介电击穿(TDDB),重点是NMOS和PMOS晶体管。使用快速测量技术,我们评估了BTI在直流和交流应力模式下的降解。我们的研究结果表明AC - BTI-Mode B (NBTI)具有频率无关性。交流模式(A和B)的正BTI (PBTI)也表现出频率无关性。此外,该研究还揭示了NMOS和PMOS器件的TDDB行为趋势。与直流相比,PMOS TDDB在较高频率下性能有所提高,而NMOS TDDB在较低频率下性能有所下降,但在较高频率下性能有所提高。这些结果表明,需要进一步研究这些可靠性机制之间的相关性,以制定有效的缓解策略。通过探索BTI和TDDB之间的关系,我们的目标是增强对这两种相似机制的认识(从器件在应力期间的角度来看)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Device and Materials Reliability
IEEE Transactions on Device and Materials Reliability 工程技术-工程:电子与电气
CiteScore
4.80
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信