Saulo G. Alberton;Alexis C. Vilas-Bôas;Marcilei A. Guazzelli;Vitor A. P. Aguiar;Matheus S. Pereira;Nemitala Added;Claudio A. Federico;Tássio C. Cavalcante;Evaldo C. F. Pereira;Rafael G. Vaz;Odair L. Gonçalez;Jeffery Wyss;Alessandro Paccagnella;Nilberto H. Medina
{"title":"Single-Event Effects Induced by Monoenergetic Fast Neutrons in Silicon Power UMOSFETs","authors":"Saulo G. Alberton;Alexis C. Vilas-Bôas;Marcilei A. Guazzelli;Vitor A. P. Aguiar;Matheus S. Pereira;Nemitala Added;Claudio A. Federico;Tássio C. Cavalcante;Evaldo C. F. Pereira;Rafael G. Vaz;Odair L. Gonçalez;Jeffery Wyss;Alessandro Paccagnella;Nilberto H. Medina","doi":"10.1109/TDMR.2025.3572829","DOIUrl":null,"url":null,"abstract":"The trench gate or U-groove MOSFET (UMOSFET) has become widely adopted as a semiconductor device globally, gradually replacing the traditional vertical double-diffused MOSFET (DMOSFET) in many applications. Evaluating the reliability of UMOSFETs regarding neutron-induced radiation effects is crucial for understanding their response to ubiquitous atmospheric neutrons. This study presents comparative experimental and computational results of Single-Event Effects induced by monoenergetic fast neutrons in UMOS and DMOS power transistors. Experiments demonstrate that UMOSFETs exhibit premature particle-induced avalanche multiplication effects compared to similarly rated DMOSFETs, which may favor destructive radiation effects, such as Single-Event Burnout, when operating in the terrestrial radiation environment.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 3","pages":"492-500"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11010150/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The trench gate or U-groove MOSFET (UMOSFET) has become widely adopted as a semiconductor device globally, gradually replacing the traditional vertical double-diffused MOSFET (DMOSFET) in many applications. Evaluating the reliability of UMOSFETs regarding neutron-induced radiation effects is crucial for understanding their response to ubiquitous atmospheric neutrons. This study presents comparative experimental and computational results of Single-Event Effects induced by monoenergetic fast neutrons in UMOS and DMOS power transistors. Experiments demonstrate that UMOSFETs exhibit premature particle-induced avalanche multiplication effects compared to similarly rated DMOSFETs, which may favor destructive radiation effects, such as Single-Event Burnout, when operating in the terrestrial radiation environment.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.