Dahai Li , Li Long , Peng Peng , Zhaodong Lin , Yongjian Zhang , Cong Xu , Changan Di , Junsong Ren
{"title":"A quantitative analysis and testing assessment method for functional damage state of electronic circuits under impact loads","authors":"Dahai Li , Li Long , Peng Peng , Zhaodong Lin , Yongjian Zhang , Cong Xu , Changan Di , Junsong Ren","doi":"10.1016/j.microrel.2025.115905","DOIUrl":null,"url":null,"abstract":"<div><div>Focusing on the assessment of the functional damage state in electronic circuits under impact loads, this paper conducted research encompassing the analysis of damage scenarios, quantitative calculation of functional damage probabilities, and the construction of damage probability curve. Additionally, we developed a comprehensive set of quantitative analysis methods for assessing the functional damage state of electronic circuits. We designed a board-level drop impact test and monitored the dynamic response curves of circuit signals under impact loads in real time. Finally, we constructed the functional damage probability curve using the damage characteristic data from the circuit signals. These results verify the reasonableness and effectiveness of the proposed quantitative analysis and testing assessment method.</div></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"175 ","pages":"Article 115905"},"PeriodicalIF":1.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002627142500318X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Focusing on the assessment of the functional damage state in electronic circuits under impact loads, this paper conducted research encompassing the analysis of damage scenarios, quantitative calculation of functional damage probabilities, and the construction of damage probability curve. Additionally, we developed a comprehensive set of quantitative analysis methods for assessing the functional damage state of electronic circuits. We designed a board-level drop impact test and monitored the dynamic response curves of circuit signals under impact loads in real time. Finally, we constructed the functional damage probability curve using the damage characteristic data from the circuit signals. These results verify the reasonableness and effectiveness of the proposed quantitative analysis and testing assessment method.
期刊介绍:
Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged.
Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.