Chao Wang , Di Lou , Zunyi Duan , Wenfeng Du , Jianhua Rong , Bin Xu
{"title":"Structural topology optimization considering material anisotropy induced by additive manufacturing processes","authors":"Chao Wang , Di Lou , Zunyi Duan , Wenfeng Du , Jianhua Rong , Bin Xu","doi":"10.1016/j.advengsoft.2025.104021","DOIUrl":null,"url":null,"abstract":"<div><div>This work proposes a structural topology optimization method to consider material anisotropy induced by additive manufacturing processes. To quantify the relationship between manufacturing processes and mechanical properties of formed materials, the building direction angle is introduced into a transversely isotropic material model as a design variable. An anisotropic material model related to the building direction is thus established. A parallel optimization framework for structural topology and building direction is proposed by extending the classical compliance minimization formulation. And, to be applicable to gradient-based optimization algorithms, sensitivities related to density and angle variables are derived separately. Especially, to overcome the convergence difficulties caused by the periodic angle variables, an adaptive reduction strategy for the feasible region of angle variables is proposed. Typical numerical examples verify the rationality of the proposed method. The results show that the building direction related process-induced anisotropy significantly affects the optimized structural properties. The fluctuation of the trigonometric functions related to the angle variables would lead to obvious iteration oscillation in the optimization process, which makes the optimization difficult to converge. The proposed adaptive reduction strategy is proven effective in addressing this challenge. Besides, typical numerical properties of the co-optimization of structural topology and building direction are also revealed.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"211 ","pages":"Article 104021"},"PeriodicalIF":5.7000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997825001590","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This work proposes a structural topology optimization method to consider material anisotropy induced by additive manufacturing processes. To quantify the relationship between manufacturing processes and mechanical properties of formed materials, the building direction angle is introduced into a transversely isotropic material model as a design variable. An anisotropic material model related to the building direction is thus established. A parallel optimization framework for structural topology and building direction is proposed by extending the classical compliance minimization formulation. And, to be applicable to gradient-based optimization algorithms, sensitivities related to density and angle variables are derived separately. Especially, to overcome the convergence difficulties caused by the periodic angle variables, an adaptive reduction strategy for the feasible region of angle variables is proposed. Typical numerical examples verify the rationality of the proposed method. The results show that the building direction related process-induced anisotropy significantly affects the optimized structural properties. The fluctuation of the trigonometric functions related to the angle variables would lead to obvious iteration oscillation in the optimization process, which makes the optimization difficult to converge. The proposed adaptive reduction strategy is proven effective in addressing this challenge. Besides, typical numerical properties of the co-optimization of structural topology and building direction are also revealed.
期刊介绍:
The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving.
The scope of the journal includes:
• Innovative computational strategies and numerical algorithms for large-scale engineering problems
• Analysis and simulation techniques and systems
• Model and mesh generation
• Control of the accuracy, stability and efficiency of computational process
• Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing)
• Advanced visualization techniques, virtual environments and prototyping
• Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations
• Application of object-oriented technology to engineering problems
• Intelligent human computer interfaces
• Design automation, multidisciplinary design and optimization
• CAD, CAE and integrated process and product development systems
• Quality and reliability.