Investigation of gate metal effects on barrier lowering, on-resistance, and breakdown voltage in p-GaN gate HEMTs

IF 4.6 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mao Jia , Bin Hou , Ling Yang , Lixin Guo , Xuefeng Zheng , Xiaohua Ma , Yue Hao
{"title":"Investigation of gate metal effects on barrier lowering, on-resistance, and breakdown voltage in p-GaN gate HEMTs","authors":"Mao Jia ,&nbsp;Bin Hou ,&nbsp;Ling Yang ,&nbsp;Lixin Guo ,&nbsp;Xuefeng Zheng ,&nbsp;Xiaohua Ma ,&nbsp;Yue Hao","doi":"10.1016/j.mssp.2025.110057","DOIUrl":null,"url":null,"abstract":"<div><div>This study systematically examines the impact mechanisms of gate metal selection on the performance of <em>p</em>-GaN HEMT. Through comprehensive analysis combining gate-source capacitance characterization with output current density and on-resistance measurements at the gate/<em>p</em>-GaN interface, we reveal that the effective gate voltage applied to the AlGaN/GaN channel decreases with reducing metal work function, consequently leading to lower output current and higher on-resistance. Quantitative characterization shows average drain-induced barrier lowering coefficients of 2 mV/V, 22.2 mV/V, and 46.7 mV/V for Ni/<em>p</em>-GaN, Cu/<em>p</em>-GaN, and W/<em>p</em>-GaN HEMTs, respectively, with corresponding off-state breakdown fields of 0.62 MV/cm, 0.56 MV/cm, and 0.48 MV/cm. Numerical simulations and band diagram analyses consistently verify and elucidate the gate metal's impact on both drain-induced barrier lowering effects and off-state breakdown characteristics.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"201 ","pages":"Article 110057"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125007942","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study systematically examines the impact mechanisms of gate metal selection on the performance of p-GaN HEMT. Through comprehensive analysis combining gate-source capacitance characterization with output current density and on-resistance measurements at the gate/p-GaN interface, we reveal that the effective gate voltage applied to the AlGaN/GaN channel decreases with reducing metal work function, consequently leading to lower output current and higher on-resistance. Quantitative characterization shows average drain-induced barrier lowering coefficients of 2 mV/V, 22.2 mV/V, and 46.7 mV/V for Ni/p-GaN, Cu/p-GaN, and W/p-GaN HEMTs, respectively, with corresponding off-state breakdown fields of 0.62 MV/cm, 0.56 MV/cm, and 0.48 MV/cm. Numerical simulations and band diagram analyses consistently verify and elucidate the gate metal's impact on both drain-induced barrier lowering effects and off-state breakdown characteristics.
栅极金属对p-GaN栅极hemt势垒降低、导通电阻和击穿电压影响的研究
本研究系统地探讨了栅极金属选择对p-GaN HEMT性能的影响机制。通过综合分析,结合栅极/p-GaN界面的输出电流密度和导通电阻测量,我们发现施加在AlGaN/GaN通道上的有效栅极电压随着金属功函数的减小而降低,从而导致输出电流降低和导通电阻升高。定量表征表明,Ni/p-GaN、Cu/p-GaN和W/p-GaN HEMTs的平均漏极诱导势垒降低系数分别为2 mV/V、22.2 mV/V和46.7 mV/V,相应的断态击穿场分别为0.62 mV/ cm、0.56 mV/ cm和0.48 mV/ cm。数值模拟和带图分析一致地验证和阐明了栅极金属对漏极诱导的势垒降低效应和脱态击穿特性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信