Self-powered energy-efficient ammonia electrosynthesis via zinc-nitrite battery with bifunctional Pd-Co(OH)2 electrocatalyst

IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tanyang Xiao , Jing Jiang , Qiancao Liu , Qiyao Zeng , Aike Liu , Lunhong Ai
{"title":"Self-powered energy-efficient ammonia electrosynthesis via zinc-nitrite battery with bifunctional Pd-Co(OH)2 electrocatalyst","authors":"Tanyang Xiao ,&nbsp;Jing Jiang ,&nbsp;Qiancao Liu ,&nbsp;Qiyao Zeng ,&nbsp;Aike Liu ,&nbsp;Lunhong Ai","doi":"10.1016/j.mtphys.2025.101858","DOIUrl":null,"url":null,"abstract":"<div><div>The electrochemical nitrite reduction reaction (NO<sub>2</sub>RR) has emerged as a promising strategy for sustainable ammonia (NH<sub>3</sub>) synthesis. However, conventional NO<sub>2</sub>RR systems suffer from high energy consumption and low efficiency due to the substantial kinetic overpotential. To address this challenge, we develop an innovative approach by coupling Pd with Co(OH)<sub>2</sub> to effectively regulate the active hydrogen (∗H) dynamics for NO<sub>2</sub><sup>−</sup>-to-NH<sub>3</sub> conversion at low potentials. Benefiting from the thermodynamically favorable hydrogen spillover in the Pd-Co(OH)<sub>2</sub>/CF, an impressively high Faradaic efficiency (∼96.36 %) and NH<sub>3</sub> production rate (∼44.69 mg h<sup>−1</sup> cm<sup>−2</sup>) are realized at −0.2 V vs RHE. Inspired by the outstanding activity of Pd-Co(OH)<sub>2</sub>/CF for anodic formaldehyde oxidation reaction (FOR), the designed FOR-NO<sub>2</sub>RR electrolysis system demonstrates remarkable energy efficiency (10.75 kWh kg<sup>−1</sup> NH<sub>3</sub>@100 mA cm<sup>−2</sup>), significantly outperforming conventional OER-NO<sub>2</sub>RR system (23.1 kWh kg<sup>−1</sup> NH<sub>3</sub>). Furthermore, a Zn-NO<sub>2</sub><sup>-</sup> battery powered FOR-NO<sub>2</sub>RR electrolysis system is proposed to enable NH<sub>4</sub>Cl fertilizer production and formaldehyde degradation. This work establishes a new paradigm for sustainable electrochemical systems that simultaneously address environmental remediation and value-added chemical production at unprecedented energy efficiency.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"58 ","pages":"Article 101858"},"PeriodicalIF":9.7000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325002147","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical nitrite reduction reaction (NO2RR) has emerged as a promising strategy for sustainable ammonia (NH3) synthesis. However, conventional NO2RR systems suffer from high energy consumption and low efficiency due to the substantial kinetic overpotential. To address this challenge, we develop an innovative approach by coupling Pd with Co(OH)2 to effectively regulate the active hydrogen (∗H) dynamics for NO2-to-NH3 conversion at low potentials. Benefiting from the thermodynamically favorable hydrogen spillover in the Pd-Co(OH)2/CF, an impressively high Faradaic efficiency (∼96.36 %) and NH3 production rate (∼44.69 mg h−1 cm−2) are realized at −0.2 V vs RHE. Inspired by the outstanding activity of Pd-Co(OH)2/CF for anodic formaldehyde oxidation reaction (FOR), the designed FOR-NO2RR electrolysis system demonstrates remarkable energy efficiency (10.75 kWh kg−1 NH3@100 mA cm−2), significantly outperforming conventional OER-NO2RR system (23.1 kWh kg−1 NH3). Furthermore, a Zn-NO2- battery powered FOR-NO2RR electrolysis system is proposed to enable NH4Cl fertilizer production and formaldehyde degradation. This work establishes a new paradigm for sustainable electrochemical systems that simultaneously address environmental remediation and value-added chemical production at unprecedented energy efficiency.

Abstract Image

Abstract Image

双功能Pd-Co(OH)2电催化剂在锌-亚硝酸盐电池上的自供电高效氨电合成
电化学亚硝酸盐还原反应(NO2RR)已成为可持续合成氨(NH3)的一种有前途的策略。然而,由于大量的动力学过电位,传统的NO2RR系统存在高能耗和低效率的问题。为了解决这一挑战,我们开发了一种创新的方法,通过将Pd与Co(OH)2偶联来有效调节低电位下NO2−到nh3转化的活性氢(∗H)动力学。得益于Pd-Co(OH)2/CF中有利的热力学氢溢出,在−0.2 V vs RHE下实现了令人印象深刻的法拉第效率(~ 96.36%)和NH3产率(~ 44.69 mg h−1 cm−2)。受Pd-Co(OH)2/CF在阳极甲醛氧化反应(for)中的杰出活性的启发,设计的for - no2rr电解系统具有显著的能源效率(10.75 kWh kg−1 NH3@100 mA cm−2),显著优于传统的OER-NO2RR系统(23.1 kWh kg−1 NH3)。此外,提出了一种由Zn-NO2电池供电的FOR-NO2RR电解系统,以实现NH4Cl肥料的生产和甲醛的降解。这项工作为可持续电化学系统建立了一个新的范例,同时以前所未有的能源效率解决环境修复和增值化学品生产问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信