Study of Resistive Switching Dynamics and Memory States Equilibria in Analog Filamentary Conductive‐Metal‐Oxide/HfOx ReRAM via Compact Modeling

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matteo Galetta, Donato Francesco Falcone, Victoria Clerico, Wooseok Choi, Stephan Menzel, Antonio La Porta, Tommaso Stecconi, Folkert Horst, Bert Jan Offrein, Valeria Bragaglia
{"title":"Study of Resistive Switching Dynamics and Memory States Equilibria in Analog Filamentary Conductive‐Metal‐Oxide/HfOx ReRAM via Compact Modeling","authors":"Matteo Galetta, Donato Francesco Falcone, Victoria Clerico, Wooseok Choi, Stephan Menzel, Antonio La Porta, Tommaso Stecconi, Folkert Horst, Bert Jan Offrein, Valeria Bragaglia","doi":"10.1002/aelm.202500373","DOIUrl":null,"url":null,"abstract":"Resistive Random Access Memory (ReRAM) devices offer a promising solution for next‐generation non‐volatile memory and neuromorphic computing systems. Yet, existing compact models fail to capture analog resistive switching behavior of ReRAM devices. This work presents an advanced physics‐based compact model for analog filamentary Conductive‐Metal‐Oxide (CMO)/HfO<jats:sub>x</jats:sub> ReRAM, capable of reproducing switching characteristics over a broad range of operating conditions. Compared to the state‐of‐the‐art, the model extends the dynamic interplay between ion migration and electron hopping, while also accounting for parasitic resistive elements. Simulations of various voltage inputs are tested to reproduce quasi‐static <jats:italic>I–V</jats:italic> curves, SET switching kinetics under single‐pulse programming conditions, and analog accumulative conductance modulation upon bipolar identical pulse streams. Additional simulations reveal the physical criterion underlying the stabilization of the CMO/HfO<jats:sub>x</jats:sub>‐based ReRAM memory state around the equilibrium point, namely symmetry point, under pulsing conditions when a fading memory mechanism emerges. Building upon the evidence of such equilibrium stabilization under pulsing and quasi‐static conditions, a procedure is established to visualize and map equilibrium memory states across different input domains. The physical model supports design optimization of switching behavior for analog neuromorphic systems and non‐volatile memory architectures. It also enables accurate integrated circuit simulations with CMO/HfO<jats:sub>x</jats:sub>‐based ReRAM technology.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"35 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202500373","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Resistive Random Access Memory (ReRAM) devices offer a promising solution for next‐generation non‐volatile memory and neuromorphic computing systems. Yet, existing compact models fail to capture analog resistive switching behavior of ReRAM devices. This work presents an advanced physics‐based compact model for analog filamentary Conductive‐Metal‐Oxide (CMO)/HfOx ReRAM, capable of reproducing switching characteristics over a broad range of operating conditions. Compared to the state‐of‐the‐art, the model extends the dynamic interplay between ion migration and electron hopping, while also accounting for parasitic resistive elements. Simulations of various voltage inputs are tested to reproduce quasi‐static I–V curves, SET switching kinetics under single‐pulse programming conditions, and analog accumulative conductance modulation upon bipolar identical pulse streams. Additional simulations reveal the physical criterion underlying the stabilization of the CMO/HfOx‐based ReRAM memory state around the equilibrium point, namely symmetry point, under pulsing conditions when a fading memory mechanism emerges. Building upon the evidence of such equilibrium stabilization under pulsing and quasi‐static conditions, a procedure is established to visualize and map equilibrium memory states across different input domains. The physical model supports design optimization of switching behavior for analog neuromorphic systems and non‐volatile memory architectures. It also enables accurate integrated circuit simulations with CMO/HfOx‐based ReRAM technology.
基于紧凑模型的模拟丝状导电-金属-氧化物/HfOx ReRAM阻性开关动力学和记忆态平衡研究
电阻式随机存取存储器(ReRAM)器件为下一代非易失性存储器和神经形态计算系统提供了一个有前途的解决方案。然而,现有的紧凑模型无法捕获ReRAM器件的模拟电阻开关行为。这项工作提出了一种先进的基于物理的紧凑模型,用于模拟丝状导电金属氧化物(CMO)/HfOx ReRAM,能够在广泛的工作条件下再现开关特性。与目前的技术水平相比,该模型扩展了离子迁移和电子跳跃之间的动态相互作用,同时也考虑了寄生电阻元件。测试了各种电压输入的模拟,以再现准静态I-V曲线,单脉冲编程条件下的SET开关动力学,以及双极相同脉冲流上的模拟累积电导调制。进一步的仿真揭示了在脉冲条件下,当衰落记忆机制出现时,基于CMO/HfOx的ReRAM记忆状态在平衡点(即对称点)附近稳定的物理准则。基于脉冲和准静态条件下这种平衡稳定的证据,建立了一个过程来可视化和映射不同输入域的平衡记忆状态。该物理模型支持模拟神经形态系统和非易失性存储器架构的开关行为设计优化。它还可以使用基于CMO/HfOx的ReRAM技术进行精确的集成电路模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信