C Liu, L Ruckman, R Herbst, B Hong, Z Li, K Kim, D Amirari, R Agustsson, J Einstein-Curtis, M Kilpatrick, J Edelen, E Nanni, S Tantawi, M Kemp
{"title":"A compact low-level RF control system for advanced concept compact electron linear accelerator.","authors":"C Liu, L Ruckman, R Herbst, B Hong, Z Li, K Kim, D Amirari, R Agustsson, J Einstein-Curtis, M Kilpatrick, J Edelen, E Nanni, S Tantawi, M Kemp","doi":"10.1063/5.0265666","DOIUrl":null,"url":null,"abstract":"<p><p>A compact low-level RF (LLRF) control system based on RF system-on-chip (RFSoC) technology has been designed for the Advanced Concept Compact Electron Linear-accelerator (ACCEL) program, which has challenging requirements in both RF performance and size, weight, and power consumption (SWaP). The compact LLRF solution employs the direct RF sampling technique of RFSoC, which samples the RF signals directly without any analog upconversion and downconversion. Compared with the conventional heterodyne based architecture used for the LLRF system of a linear accelerator (LINAC), the elimination of analog mixers can significantly reduce the size and weight of the system, especially with LINAC requiring a larger number of RF channels. Based on the requirements of ACCEL, a prototype LLRF platform has been developed, and the control schemes have been proposed. The prototype LLRF system demonstrated magnitude and phase fluctuation levels below 1% and 1° on the flattop of a 2 μs RF pulse. The LLRF control schemes proposed for ACCEL are implemented with a prototype hardware platform. This paper will introduce the new compact LLRF solution and summarize a selection of experimental test results of the prototype itself and with the accelerating structure cavities designed for ACCEL.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 9","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0265666","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
A compact low-level RF (LLRF) control system based on RF system-on-chip (RFSoC) technology has been designed for the Advanced Concept Compact Electron Linear-accelerator (ACCEL) program, which has challenging requirements in both RF performance and size, weight, and power consumption (SWaP). The compact LLRF solution employs the direct RF sampling technique of RFSoC, which samples the RF signals directly without any analog upconversion and downconversion. Compared with the conventional heterodyne based architecture used for the LLRF system of a linear accelerator (LINAC), the elimination of analog mixers can significantly reduce the size and weight of the system, especially with LINAC requiring a larger number of RF channels. Based on the requirements of ACCEL, a prototype LLRF platform has been developed, and the control schemes have been proposed. The prototype LLRF system demonstrated magnitude and phase fluctuation levels below 1% and 1° on the flattop of a 2 μs RF pulse. The LLRF control schemes proposed for ACCEL are implemented with a prototype hardware platform. This paper will introduce the new compact LLRF solution and summarize a selection of experimental test results of the prototype itself and with the accelerating structure cavities designed for ACCEL.
期刊介绍:
Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.