{"title":"On the use and misuse of time-rescaling to assess the goodness-of-fit of self-exciting temporal point processes.","authors":"M-A El-Aroui","doi":"10.1080/02664763.2025.2459245","DOIUrl":null,"url":null,"abstract":"<p><p>The paper first highlights important drawbacks and biases related to the common use of time-rescaling to assess the goodness-of-fit (Gof) of self-exciting temporal point process (SETPP) models. Then it presents a new predictive time-rescaling approach leading to an asymptotically unbiased Gof framework for general SETPPs in the case of single observed trajectories. The predictive approach focuses on forecasting accuracy and addresses the bias problem resulting from the plugged-in estimated parameters. Dawid's prequential approach is used and the models' checking is mainly based on the forecasting accuracy of arrival times. These times are transformed, using sequentially estimated parameters, into random vectors which are proved to converge in probability under the null hypothesis and standard regulatory conditions to vectors of iid Exponential(1) rv's. Numerical experiments are used to compare the performances of the standard and predictive time-rescaling for Gof assessment of non-homogeneous Poisson and Hawkes self-exciting temporal processes. Data of Japanese seismic events are also used to illustrate the dynamic aspect of the proposed model-checking approach.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"52 12","pages":"2247-2270"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12416029/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2025.2459245","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
The paper first highlights important drawbacks and biases related to the common use of time-rescaling to assess the goodness-of-fit (Gof) of self-exciting temporal point process (SETPP) models. Then it presents a new predictive time-rescaling approach leading to an asymptotically unbiased Gof framework for general SETPPs in the case of single observed trajectories. The predictive approach focuses on forecasting accuracy and addresses the bias problem resulting from the plugged-in estimated parameters. Dawid's prequential approach is used and the models' checking is mainly based on the forecasting accuracy of arrival times. These times are transformed, using sequentially estimated parameters, into random vectors which are proved to converge in probability under the null hypothesis and standard regulatory conditions to vectors of iid Exponential(1) rv's. Numerical experiments are used to compare the performances of the standard and predictive time-rescaling for Gof assessment of non-homogeneous Poisson and Hawkes self-exciting temporal processes. Data of Japanese seismic events are also used to illustrate the dynamic aspect of the proposed model-checking approach.
期刊介绍:
Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.