Bernat Miralles-Pérez, Sara Ramos-Romero, María José Charpentier, Vanessa Sánchez-Martos, Àngels Fortuño-Mar, Julia Ponomarenko, Susana Amézqueta, David Piñol-Piñol, Xiang Zhang, Josep Lluís Torres, Marta Romeu
{"title":"Dietary Consumption of Type 2 Resistant Starch and d-Fagomine Delays Progression of Metabolic Disturbances in Male Rats on High-Fat Diet.","authors":"Bernat Miralles-Pérez, Sara Ramos-Romero, María José Charpentier, Vanessa Sánchez-Martos, Àngels Fortuño-Mar, Julia Ponomarenko, Susana Amézqueta, David Piñol-Piñol, Xiang Zhang, Josep Lluís Torres, Marta Romeu","doi":"10.1002/mnfr.70230","DOIUrl":null,"url":null,"abstract":"<p><p>High-fat (HF) diets contribute to obesity, insulin resistance, fatty liver, gut microbiota dysbiosis, oxidative stress, and low-grade chronic inflammation. This study evaluated the preventive effects of dietary Type 2 resistant starch (RS2) from high-amylose maize and low-dose d-fagomine (FG) from buckwheat on these metabolic disturbances. Male Wistar-Kyoto rats (9-10 weeks old) were assigned to four diet groups for 10 weeks: standard (STD) diet, HF diet (45% kcal from fat), HF + RS diet (15% RS2), and HF + FG diet (0.1% FG). Body characteristics, metabolic parameters, oxidative stress, gut microbiota, short-chain fatty acids (SCFAs), and eicosanoids were analyzed. Both HF + RS and HF + FG diets reduced perigonadal fat, plasma triacylglycerols, and oxidative stress. HF + RS diet improved glucose tolerance without significantly affecting insulin sensitivity, while HF + FG diet showed a tendency for improvement at later stages. Additionally, HF + RS diet showed greater beneficial effects on body weight and liver steatosis than HF + FG diet, likely due to gut microbiota and SCFA modulation. RS2 exerted stronger metabolic effects than FG under HF diet conditions, suggesting its greater potential in mitigating obesity-related complications. FG effects may require longer exposure to manifest.</p>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":" ","pages":"e70230"},"PeriodicalIF":4.2000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/mnfr.70230","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
High-fat (HF) diets contribute to obesity, insulin resistance, fatty liver, gut microbiota dysbiosis, oxidative stress, and low-grade chronic inflammation. This study evaluated the preventive effects of dietary Type 2 resistant starch (RS2) from high-amylose maize and low-dose d-fagomine (FG) from buckwheat on these metabolic disturbances. Male Wistar-Kyoto rats (9-10 weeks old) were assigned to four diet groups for 10 weeks: standard (STD) diet, HF diet (45% kcal from fat), HF + RS diet (15% RS2), and HF + FG diet (0.1% FG). Body characteristics, metabolic parameters, oxidative stress, gut microbiota, short-chain fatty acids (SCFAs), and eicosanoids were analyzed. Both HF + RS and HF + FG diets reduced perigonadal fat, plasma triacylglycerols, and oxidative stress. HF + RS diet improved glucose tolerance without significantly affecting insulin sensitivity, while HF + FG diet showed a tendency for improvement at later stages. Additionally, HF + RS diet showed greater beneficial effects on body weight and liver steatosis than HF + FG diet, likely due to gut microbiota and SCFA modulation. RS2 exerted stronger metabolic effects than FG under HF diet conditions, suggesting its greater potential in mitigating obesity-related complications. FG effects may require longer exposure to manifest.
期刊介绍:
Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines:
Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics.
Immunology: Understanding the interactions of food and the immune system.
Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes.
Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.